genienlp/tests/test.sh

264 lines
13 KiB
Bash
Executable File

#!/usr/bin/env bash
# functional tests
set -e
set -x
SRCDIR=`dirname $0`
on_error () {
rm -fr $workdir
rm -rf $SRCDIR/torch-shm-file-*
}
# allow faster local testing
if test -d $(dirname ${SRCDIR})/.embeddings; then
embedding_dir="$(dirname ${SRCDIR})/.embeddings"
else
mkdir -p $SRCDIR/embeddings
embedding_dir="$SRCDIR/embeddings"
fi
export SENTENCE_TRANSFORMERS_HOME="$embedding_dir"
TMPDIR=`pwd`
workdir=`mktemp -d $TMPDIR/genieNLP-tests-XXXXXX`
trap on_error ERR INT TERM
i=0
for hparams in \
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random" \
"--model TransformerSeq2Seq --pretrained_model sshleifer/tiny-mbart" \
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random --preprocess_special_tokens" \
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random --almond_detokenize_sentence" \
"--model TransformerLSTM --pretrained_model bert-base-cased --trainable_decoder_embeddings=50 --num_beams 4 --num_beam_groups 4 --num_outputs 4 --diversity_penalty 1.0" \
"--model TransformerLSTM --pretrained_model bert-base-multilingual-cased --trainable_decoder_embeddings=50" \
"--model TransformerLSTM --pretrained_model xlm-roberta-base --trainable_decoder_embeddings=50" \
"--model TransformerLSTM --pretrained_model bert-base-cased --trainable_decoder_embeddings=50 --eval_set_name aux" ;
do
# train
pipenv run python3 -m genienlp train --train_tasks almond --train_batch_tokens 100 --val_batch_size 100 --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $embedding_dir --no_commit
# greedy prediction
pipenv run python3 -m genienlp predict --tasks almond --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $embedding_dir --skip_cache
# check if result file exists
if test ! -f $workdir/model_$i/eval_results/test/almond.tsv ; then
echo "File not found!"
exit
fi
# test exporting
pipenv run python3 -m genienlp export --path $workdir/model_$i --output $workdir/model_$i_exported
if [ $i == 0 ] ; then
echo "Testing the server mode"
echo '{"id": "dummy_example_1", "context": "show me .", "question": "translate to thingtalk", "answer": "now => () => notify"}' | pipenv run python3 -m genienlp server --path $workdir/model_$i --stdin
fi
rm -rf $workdir/model_$i $workdir/model_$i_exported
i=$((i+1))
done
# test calibration
for hparams in \
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random" ;
do
# train
pipenv run python3 -m genienlp train --train_tasks almond --train_batch_tokens 100 --val_batch_size 100 --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $embedding_dir --no_commit
# greedy prediction
pipenv run python3 -m genienlp predict --tasks almond --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $embedding_dir --skip_cache --save_confidence_features --confidence_feature_path $workdir/model_$i/confidences.pkl --mc_dropout --mc_dropout_num 10
# check if confidence file exists
if test ! -f $workdir/model_$i/confidences.pkl ; then
echo "File not found!"
exit
fi
# calibrate
pipenv run python3 -m genienlp calibrate --confidence_path $workdir/model_$i/confidences.pkl --save $workdir/model_$i --testing
# check if calibrator exists
if test ! -f $workdir/model_$i/calibrator.pkl ; then
echo "File not found!"
exit
fi
echo "Testing the server mode after calibration"
echo '{"id": "dummy_example_1", "context": "show me .", "question": "translate to thingtalk", "answer": "now => () => notify"}' | pipenv run python3 -m genienlp server --path $workdir/model_$i --stdin
rm -rf $workdir/model_$i $workdir/model_$i_exported
i=$((i+1))
done
# test almond_multilingual task
for hparams in \
"--model TransformerLSTM --pretrained_model bert-base-multilingual-cased --trainable_decoder_embeddings=50" \
"--model TransformerLSTM --pretrained_model bert-base-multilingual-cased --trainable_decoder_embeddings=50 --sentence_batching --use_encoder_loss" \
"--model TransformerLSTM --pretrained_model bert-base-multilingual-cased --trainable_decoder_embeddings=50 --rnn_zero_state cls --almond_lang_as_question" ; do
# train
pipenv run python3 -m genienlp train --train_tasks almond_multilingual --train_languages fa+en --eval_languages fa+en --train_batch_tokens 100 --val_batch_size 100 --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $embedding_dir --no_commit
# greedy decode
# combined evaluation
pipenv run python3 -m genienlp predict --tasks almond_multilingual --pred_languages fa+en --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $embedding_dir --skip_cache
# separate evaluation
pipenv run python3 -m genienlp predict --tasks almond_multilingual --separate_eval --pred_languages fa+en --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $embedding_dir --skip_cache
# check if result file exists
if test ! -f $workdir/model_$i/eval_results/test/almond_multilingual_en.tsv || test ! -f $workdir/model_$i/eval_results/test/almond_multilingual_fa.tsv || test ! -f $workdir/model_$i/eval_results/test/almond_multilingual_fa+en.tsv; then
echo "File not found!"
exit
fi
rm -rf $workdir/model_$i
i=$((i+1))
done
# test natural_seq2seq and paraphrase tasks
for hparams in \
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random"; do
# train
pipenv run python3 -m genienlp train --train_tasks natural_seq2seq --train_batch_tokens 100 --val_batch_size 100 --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $embedding_dir --no_commit
# greedy prediction
pipenv run python3 -m genienlp predict --tasks paraphrase --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $embedding_dir --skip_cache
# check if result file exists
if test ! -f $workdir/model_$i/eval_results/test/paraphrase.tsv || test ! -f $workdir/model_$i/eval_results/test/paraphrase.results.json; then
echo "File not found!"
exit
fi
rm -rf $workdir/model_$i
i=$((i+1))
done
# paraphrasing tests
cp -r $SRCDIR/dataset/paraphrasing/ $workdir/paraphrasing/
for model in "gpt2" "sshleifer/bart-tiny-random" ; do
if [[ $model == *gpt2* ]] ; then
model_type="gpt2"
elif [[ $model == */bart* ]] ; then
model_type="bart"
fi
# train a paraphrasing model for a few iterations
pipenv run python3 -m genienlp train-paraphrase --sort_by_length --input_column 0 --gold_column 1 --train_data_file $workdir/paraphrasing/train.tsv --eval_data_file $workdir/paraphrasing/dev.tsv --output_dir $workdir/"$model_type" --tensorboard_dir $workdir/tensorboard/ --model_type $model_type --do_train --do_eval --evaluate_during_training --overwrite_output_dir --logging_steps 1000 --save_steps 1000 --max_steps 4 --save_total_limit 1 --gradient_accumulation_steps 2 --per_gpu_eval_batch_size 1 --per_gpu_train_batch_size 1 --num_train_epochs 1 --model_name_or_path $model --overwrite_cache
# train a second paraphrasing model (testing num_input_chunks)
pipenv run python3 -m genienlp train-paraphrase --sort_by_length --num_input_chunks 2 --input_column 0 --gold_column 1 --train_data_file $workdir/paraphrasing/train.tsv --eval_data_file $workdir/paraphrasing/dev.tsv --output_dir $workdir/"$model_type"_2/ --tensorboard_dir $workdir/tensorboard/ --model_type $model_type --do_train --do_eval --evaluate_during_training --overwrite_output_dir --logging_steps 1000 --save_steps 1000 --max_steps 4 --save_total_limit 1 --gradient_accumulation_steps 2 --per_gpu_eval_batch_size 1 --per_gpu_train_batch_size 1 --num_train_epochs 1 --model_name_or_path $model --overwrite_cache
# use it to paraphrase almond's train set
pipenv run python3 -m genienlp run-paraphrase --model_name_or_path $workdir/"$model_type" --length 15 --temperature 0.4 --repetition_penalty 1.0 --num_samples 4 --input_file $SRCDIR/dataset/almond/train.tsv --input_column 1 --output_file $workdir/generated_"$model_type".tsv --task paraphrase
# check if result file exists
if test ! -f $workdir/generated_"$model_type".tsv ; then
echo "File not found!"
exit
fi
rm -rf $workdir/generated_"$model_type".tsv
done
# masked paraphrasing tests
cp -r $SRCDIR/dataset/paraphrasing/ $workdir/masked_paraphrasing/
for model in "sshleifer/bart-tiny-random" "sshleifer/tiny-mbart" ; do
if [[ $model == *mbart* ]] ; then
model_type="mbart"
elif [[ $model == *bart* ]] ; then
model_type="bart"
fi
# use a pre-trained model
pipenv run python3 -m genienlp run-paraphrase --model_name_or_path $model --length 15 --temperature 0 --repetition_penalty 1.0 --num_samples 1 --batch_size 3 --input_file $workdir/masked_paraphrasing/dev.tsv --input_column 0 --gold_column 1 --output_file $workdir/generated_"$model_type".tsv --skip_heuristics --task paraphrase --infill_text --num_text_spans 1 --src_lang en --tgt_lang en
# create input file for sts filtering
paste <(cut -f1-2 $workdir/masked_paraphrasing/dev.tsv) <(cut -f2 $workdir/generated_"$model_type".tsv) <(cut -f3 $workdir/masked_paraphrasing/dev.tsv) > $workdir/sts_input_"$model_type".tsv
# calculate sts score for paraphrases
pipenv run python3 -m genienlp calculate-paraphrase-sts --input_file $workdir/sts_input_"$model_type".tsv --output_file $workdir/sts_output_score_"$model_type".tsv
# filter paraphrases based on sts score
pipenv run python3 -m genienlp filter-paraphrase-sts --input_file $workdir/sts_output_score_"$model_type".tsv --output_file $workdir/sts_output_"$model_type".tsv --filtering_metric constant --filtering_threshold 0.98
if ! [ -f $workdir/generated_"$model_type".tsv && -f $workdir/sts_output_"$model_type".tsv ] ; then
echo "File not found!"
exit
fi
done
rm -fr $workdir
rm -rf $SRCDIR/torch-shm-fi
# translation tests
mkdir -p $workdir/translation
cp -r $SRCDIR/dataset/translation/en-de $workdir/translation
for model in "t5-small" "Helsinki-NLP/opus-mt-en-de" ; do
if [[ $model == *t5* ]] ; then
base_model="t5"
elif [[ $model == Helsinki-NLP* ]] ; then
base_model="marian"
fi
# use a pre-trained model
pipenv run python3 -m genienlp run-paraphrase --model_name_or_path $model --length 15 --temperature 0 --repetition_penalty 1.0 --num_samples 1 --batch_size 3 --input_file $workdir/translation/en-de/dev_"$base_model"_aligned.tsv --input_column 0 --gold_column 1 --output_file $workdir/generated_"$base_model"_aligned.tsv --skip_heuristics --att_pooling mean --task translate --src_lang en --tgt_lang de --replace_qp --force_replace_qp --output_attentions
# check if result file exists and exact match accuracy is 100%
cut -f2 $workdir/translation/en-de/dev_"$base_model"_aligned.tsv | diff -u - $workdir/generated_"$base_model"_aligned.tsv
if test ! -f $workdir/generated_"$base_model"_aligned.tsv ; then
echo "File not found!"
exit
fi
rm -rf $workdir/generated_"$base_model"_aligned.tsv
done
# test kfserver
for hparams in \
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random" ;
do
# train
pipenv run python3 -m genienlp train --train_tasks almond --train_batch_tokens 100 --val_batch_size 100 --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $embedding_dir --no_commit
# run kfserver in background
(pipenv run python3 -m genienlp kfserver --path $workdir/model_$i)&
SERVER_PID=$!
sleep 5
# send predict request via http
request='{"id":"123", "instances": [{"task": "generic", "context": "", "question": "what is the weather"}]}'
status=`curl -s -o /dev/stderr -w "%{http_code}" http://localhost:8080/v1/models/nlp:predict -d "$request"`
kill $SERVER_PID
if [[ "$status" -ne 200 ]]; then
echo "Unexpected http status: $status"
exit 1
fi
rm -rf $workdir/model_$i $workdir/model_$i_exported
i=$((i+1))
done
rm -fr $workdir
rm -rf $SRCDIR/torch-shm-file-*