genienlp/tests/test.sh

46 lines
1.6 KiB
Bash
Executable File

#!/usr/bin/env bash
set -e
set -x
SRCDIR=`dirname $0`
# functional tests
function on_error {
rm -fr $workdir
}
mkdir -p $SRCDIR/embeddings
for v in glove.6B.50d charNgram ; do
for f in vectors itos table ; do
wget -c "https://parmesan.stanford.edu/glove/${v}.txt.${f}.npy" -O $SRCDIR/embeddings/${v}.txt.${f}.npy
done
done
TMPDIR=`pwd`
workdir=`mktemp -d $TMPDIR/genieNLP-tests-XXXXXX`
trap on_error ERR INT TERM
i=0
for hparams in "--encoder_embeddings=small_glove+char --decoder_embeddings=small_glove+char" \
"--encoder_embeddings=bert-base-uncased --decoder_embeddings= --trainable_decoder_embeddings=50" \
"--encoder_embeddings=bert-base-uncased --decoder_embeddings= --trainable_decoder_embeddings=50 --seq2seq_encoder=Identity --dimension=768" \
"--encoder_embeddings=bert-base-uncased --decoder_embeddings= --trainable_decoder_embeddings=50 --seq2seq_encoder=BiLSTM --dimension=768" ; do
# train
pipenv run python3 -m genienlp train --train_tasks almond --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --root "" --embeddings $SRCDIR/embeddings --no_commit
# greedy decode
pipenv run python3 -m genienlp predict --tasks almond --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $SRCDIR/embeddings
# check if result files exist
if test ! -f $workdir/model_$i/eval_results/test/almond.tsv ; then
echo "File not found!"
exit
fi
i=$((i+1))
done
rm -fr $workdir