genienlp/text/torchtext/vocab.py

401 lines
16 KiB
Python

from __future__ import unicode_literals
import array
from collections import defaultdict
import io
import logging
import os
import zipfile
import six
from six.moves.urllib.request import urlretrieve
import torch
from tqdm import tqdm
import tarfile
from .utils import reporthook
logger = logging.getLogger(__name__)
class Vocab(object):
"""Defines a vocabulary object that will be used to numericalize a field.
Attributes:
freqs: A collections.Counter object holding the frequencies of tokens
in the data used to build the Vocab.
stoi: A collections.defaultdict instance mapping token strings to
numerical identifiers.
itos: A list of token strings indexed by their numerical identifiers.
"""
def __init__(self, counter, max_size=None, min_freq=1, specials=['<pad>'],
vectors=None, cat_vectors=True):
"""Create a Vocab object from a collections.Counter.
Arguments:
counter: collections.Counter object holding the frequencies of
each value found in the data.
max_size: The maximum size of the vocabulary, or None for no
maximum. Default: None.
min_freq: The minimum frequency needed to include a token in the
vocabulary. Values less than 1 will be set to 1. Default: 1.
specials: The list of special tokens (e.g., padding or eos) that
will be prepended to the vocabulary in addition to an <unk>
token. Default: ['<pad>']
vectors: One of either the available pretrained vectors
or custom pretrained vectors (see Vocab.load_vectors);
or a list of aforementioned vectors
"""
self.freqs = counter
counter = counter.copy()
min_freq = max(min_freq, 1)
counter.update(specials)
self.stoi = defaultdict(_default_unk_index)
self.stoi.update({tok: i for i, tok in enumerate(specials)})
self.itos = list(specials)
counter.subtract({tok: counter[tok] for tok in specials})
max_size = None if max_size is None else max_size + len(self.itos)
# sort by frequency, then alphabetically
words_and_frequencies = sorted(counter.items(), key=lambda tup: tup[0])
words_and_frequencies.sort(key=lambda tup: tup[1], reverse=True)
for word, freq in words_and_frequencies:
if freq < min_freq or len(self.itos) == max_size:
break
self.itos.append(word)
self.stoi[word] = len(self.itos) - 1
self.vectors = None
if vectors is not None:
self.load_vectors(vectors, cat=cat_vectors)
def __eq__(self, other):
if self.freqs != other.freqs:
return False
if self.stoi != other.stoi:
return False
if self.itos != other.itos:
return False
if self.vectors != other.vectors:
return False
return True
def __len__(self):
return len(self.itos)
def extend(self, v, sort=False):
words = sorted(v.itos) if sort else v.itos
for w in words:
if w not in self.stoi:
self.itos.append(w)
self.stoi[w] = len(self.itos) - 1
def load_vectors(self, vectors, cat=True):
"""
Arguments:
vectors: one of or a list containing instantiations of the
GloVe, CharNGram, or Vectors classes. Alternatively, one
of or a list of available pretrained vectors:
charngram.100d
fasttext.en.300d
fasttext.simple.300d
glove.42B.300d
glove.840B.300d
glove.twitter.27B.25d
glove.twitter.27B.50d
glove.twitter.27B.100d
glove.twitter.27B.200d
glove.6B.50d
glove.6B.100d
glove.6B.200d
glove.6B.300d
"""
if not isinstance(vectors, list):
vectors = [vectors]
for idx, vector in enumerate(vectors):
if six.PY2 and isinstance(vector, str):
vector = six.text_type(vector)
if isinstance(vector, six.string_types):
# Convert the string pretrained vector identifier
# to a Vectors object
if vector not in pretrained_aliases:
raise ValueError(
"Got string input vector {}, but allowed pretrained "
"vectors are {}".format(
vector, list(pretrained_aliases.keys())))
vectors[idx] = pretrained_aliases[vector]()
elif not isinstance(vector, Vectors):
raise ValueError(
"Got input vectors of type {}, expected str or "
"Vectors object".format(type(vector)))
if cat:
tot_dim = sum(v.dim for v in vectors)
self.vectors = torch.Tensor(len(self), tot_dim)
for ti, token in enumerate(self.itos):
start_dim = 0
for v in vectors:
end_dim = start_dim + v.dim
self.vectors[ti][start_dim:end_dim] = v[token.strip()]
start_dim = end_dim
assert(start_dim == tot_dim)
else:
self.vectors = [torch.Tensor(len(self), v.dim) for v in vectors]
for ti, t in enumerate(self.itos):
for vi, v in enumerate(vectors):
self.vectors[vi][ti] = v[t.strip()]
def set_vectors(self, stoi, vectors, dim, unk_init=torch.Tensor.zero_):
"""
Set the vectors for the Vocab instance from a collection of Tensors.
Arguments:
stoi: A dictionary of string to the index of the associated vector
in the `vectors` input argument.
vectors: An indexed iterable (or other structure supporting __getitem__) that
given an input index, returns a FloatTensor representing the vector
for the token associated with the index. For example,
vector[stoi["string"]] should return the vector for "string".
dim: The dimensionality of the vectors.
unk_init (callback): by default, initialize out-of-vocabulary word vectors
to zero vectors; can be any function that takes in a Tensor and
returns a Tensor of the same size. Default: torch.Tensor.zero_
"""
self.vectors = torch.Tensor(len(self), dim)
for i, token in enumerate(self.itos):
wv_index = stoi.get(token, None)
if wv_index is not None:
self.vectors[i] = vectors[wv_index]
else:
self.vectors[i] = unk_init(self.vectors[i])
class SubwordVocab(Vocab):
def __init__(self, counter, max_size=None, specials=['<pad>'],
vectors=None, unk_init=torch.Tensor.zero_, expand_vocab=False, cat_vectors=True):
"""Create a revtok subword vocabulary from a collections.Counter.
Arguments:
counter: collections.Counter object holding the frequencies of
each word found in the data.
max_size: The maximum size of the subword vocabulary, or None for no
maximum. Default: None.
specials: The list of special tokens (e.g., padding or eos) that
will be prepended to the vocabulary in addition to an <unk>
token.
"""
try:
import revtok
except ImportError:
print("Please install revtok.")
raise
self.stoi = defaultdict(_default_unk_index)
self.stoi.update({tok: i for i, tok in enumerate(specials)})
self.itos = specials
self.segment = revtok.SubwordSegmenter(counter, max_size)
max_size = None if max_size is None else max_size + len(self.itos)
# sort by frequency/entropy, then alphabetically
toks = sorted(self.segment.vocab.items(),
key=lambda tup: (len(tup[0]) != 1, -tup[1], tup[0]))
for tok, _ in toks:
self.itos.append(tok)
self.stoi[tok] = len(self.itos) - 1
self.vectors = None
if vectors is not None:
self.load_vectors(vectors, cat=cat_vectors)
class Vectors(object):
def __init__(self, name, cache='.vector_cache',
url=None, unk_init=torch.Tensor.zero_):
"""Arguments:
name: name of the file that contains the vectors
cache: directory for cached vectors
url: url for download if vectors not found in cache
unk_init (callback): by default, initalize out-of-vocabulary word vectors
to zero vectors; can be any function that takes in a Tensor and
returns a Tensor of the same size
"""
self.unk_init = unk_init
self.cache(name, cache, url=url)
def __getitem__(self, token):
if token in self.stoi:
return self.vectors[self.stoi[token]]
else:
return self.unk_init(torch.Tensor(1, self.dim))
def cache(self, name, cache, url=None):
if os.path.isfile(name):
path = name
path_pt = os.path.join(cache, os.path.basename(name)) + '.pt'
else:
path = os.path.join(cache, name)
path_pt = path + '.pt'
if not os.path.isfile(path_pt):
if not os.path.isfile(path) and url:
logger.info('Downloading vectors from {}'.format(url))
if not os.path.exists(cache):
os.makedirs(cache)
dest = os.path.join(cache, os.path.basename(url))
if not os.path.isfile(dest):
with tqdm(unit='B', unit_scale=True, miniters=1, desc=dest) as t:
urlretrieve(url, dest, reporthook=reporthook(t))
logger.info('Extracting vectors into {}'.format(cache))
ext = os.path.splitext(dest)[1][1:]
if ext == 'zip':
with zipfile.ZipFile(dest, "r") as zf:
zf.extractall(cache)
elif ext == 'gz':
with tarfile.open(dest, 'r:gz') as tar:
tar.extractall(path=cache)
if not os.path.isfile(path):
raise RuntimeError('no vectors found at {}'.format(path))
# str call is necessary for Python 2/3 compatibility, since
# argument must be Python 2 str (Python 3 bytes) or
# Python 3 str (Python 2 unicode)
itos, vectors, dim = [], array.array(str('d')), None
# Try to read the whole file with utf-8 encoding.
binary_lines = False
try:
with io.open(path, encoding="utf8") as f:
lines = [line for line in f]
# If there are malformed lines, read in binary mode
# and manually decode each word from utf-8
except:
logger.warning("Could not read {} as UTF8 file, "
"reading file as bytes and skipping "
"words with malformed UTF8.".format(path))
with open(path, 'rb') as f:
lines = [line for line in f]
binary_lines = True
logger.info("Loading vectors from {}".format(path))
for line in tqdm(lines, total=len(lines)):
# Explicitly splitting on " " is important, so we don't
# get rid of Unicode non-breaking spaces in the vectors.
entries = line.rstrip().split(b" " if binary_lines else " ")
word, entries = entries[0], entries[1:]
if dim is None and len(entries) > 1:
dim = len(entries)
elif len(entries) == 1:
logger.warning("Skipping token {} with 1-dimensional "
"vector {}; likely a header".format(word, entries))
continue
elif dim != len(entries):
raise RuntimeError(
"Vector for token {} has {} dimensions, but previously "
"read vectors have {} dimensions. All vectors must have "
"the same number of dimensions.".format(word, len(entries), dim))
if binary_lines:
try:
if isinstance(word, six.binary_type):
word = word.decode('utf-8')
except:
logger.info("Skipping non-UTF8 token {}".format(repr(word)))
continue
vectors.extend(float(x) for x in entries)
itos.append(word)
self.itos = itos
self.stoi = {word: i for i, word in enumerate(itos)}
self.vectors = torch.Tensor(vectors).view(-1, dim)
self.dim = dim
logger.info('Saving vectors to {}'.format(path_pt))
torch.save((self.itos, self.stoi, self.vectors, self.dim), path_pt)
else:
logger.info('Loading vectors from {}'.format(path_pt))
self.itos, self.stoi, self.vectors, self.dim = torch.load(path_pt)
class GloVe(Vectors):
url = {
'42B': 'http://nlp.stanford.edu/data/glove.42B.300d.zip',
'840B': 'http://nlp.stanford.edu/data/glove.840B.300d.zip',
'twitter.27B': 'http://nlp.stanford.edu/data/glove.twitter.27B.zip',
'6B': 'http://nlp.stanford.edu/data/glove.6B.zip',
}
def __init__(self, name='840B', dim=300, **kwargs):
url = self.url[name]
name = 'glove.{}.{}d.txt'.format(name, str(dim))
super(GloVe, self).__init__(name, url=url, **kwargs)
class FastText(Vectors):
url_base = 'https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.{}.vec'
def __init__(self, language="en", **kwargs):
url = self.url_base.format(language)
name = os.path.basename(url)
super(FastText, self).__init__(name, url=url, **kwargs)
class CharNGram(Vectors):
name = 'charNgram.txt'
url = ('http://www.logos.t.u-tokyo.ac.jp/~hassy/publications/arxiv2016jmt/'
'jmt_pre-trained_embeddings.tar.gz')
def __init__(self, **kwargs):
super(CharNGram, self).__init__(self.name, url=self.url, **kwargs)
def __getitem__(self, token):
vector = torch.Tensor(1, self.dim).zero_()
if token == "<unk>":
return self.unk_init(vector)
# These literals need to be coerced to unicode for Python 2 compatibility
# when we try to join them with read ngrams from the files.
chars = ['#BEGIN#'] + list(token) + ['#END#']
num_vectors = 0
for n in [2, 3, 4]:
end = len(chars) - n + 1
grams = [chars[i:(i + n)] for i in range(end)]
for gram in grams:
gram_key = '{}gram-{}'.format(n, ''.join(gram))
if gram_key in self.stoi:
vector += self.vectors[self.stoi[gram_key]]
num_vectors += 1
if num_vectors > 0:
vector /= num_vectors
else:
vector = self.unk_init(vector)
return vector
def _default_unk_index():
return 0
pretrained_aliases = {
"charngram.100d": lambda: CharNGram(),
"fasttext.en.300d": lambda: FastText(language="en"),
"fasttext.simple.300d": lambda: FastText(language="simple"),
"glove.42B.300d": lambda: GloVe(name="42B", dim="300"),
"glove.840B.300d": lambda: GloVe(name="840B", dim="300"),
"glove.twitter.27B.25d": lambda: GloVe(name="twitter.27B", dim="25"),
"glove.twitter.27B.50d": lambda: GloVe(name="twitter.27B", dim="50"),
"glove.twitter.27B.100d": lambda: GloVe(name="twitter.27B", dim="100"),
"glove.twitter.27B.200d": lambda: GloVe(name="twitter.27B", dim="200"),
"glove.6B.50d": lambda: GloVe(name="6B", dim="50"),
"glove.6B.100d": lambda: GloVe(name="6B", dim="100"),
"glove.6B.200d": lambda: GloVe(name="6B", dim="200"),
"glove.6B.300d": lambda: GloVe(name="6B", dim="300")
}