125 lines
7.9 KiB
Python
125 lines
7.9 KiB
Python
import os
|
|
from copy import deepcopy
|
|
import types
|
|
import sys
|
|
from argparse import ArgumentParser
|
|
import subprocess
|
|
import json
|
|
import datetime
|
|
from dateutil import tz
|
|
|
|
|
|
def get_commit():
|
|
directory = os.path.dirname(sys.argv[0])
|
|
return subprocess.Popen("cd {} && git log | head -n 1".format(directory), shell=True, stdout=subprocess.PIPE).stdout.read().split()[1].decode()
|
|
|
|
|
|
def save_args(args):
|
|
os.makedirs(args.log_dir, exist_ok=args.exist_ok)
|
|
with open(os.path.join(args.log_dir, 'config.json'), 'wt') as f:
|
|
json.dump(vars(args), f, indent=2)
|
|
|
|
|
|
def parse():
|
|
"""
|
|
Returns the arguments from the command line.
|
|
"""
|
|
parser = ArgumentParser()
|
|
parser.add_argument('--data', default='/decaNLP/.data/', type=str, help='where to load data from.')
|
|
parser.add_argument('--save', default='/decaNLP/results', type=str, help='where to save results.')
|
|
parser.add_argument('--embeddings', default='/decaNLP/.embeddings', type=str, help='where to save embeddings.')
|
|
|
|
parser.add_argument('--train_tasks', nargs='+', type=str, help='tasks to use for training', required=True)
|
|
parser.add_argument('--train_iterations', nargs='+', type=int, help='number of iterations to focus on each task')
|
|
parser.add_argument('--train_batch_tokens', nargs='+', default=[9000], type=int, help='Number of tokens to use for dynamic batching, corresponging to tasks in train tasks')
|
|
parser.add_argument('--jump_start', default=0, type=int, help='number of iterations to give jump started tasks')
|
|
parser.add_argument('--n_jump_start', default=0, type=int, help='how many tasks to jump start (presented in order)')
|
|
parser.add_argument('--num_print', default=15, type=int, help='how many validation examples with greedy output to print to std out')
|
|
|
|
parser.add_argument('--tensorboard', action='store_true', help='Log to tensorboard; may slow down training')
|
|
parser.add_argument('--log_every', default=int(1e2), type=int, help='how often to log results in # of iterations')
|
|
parser.add_argument('--save_every', default=int(1e3), type=int, help='how often to save a checkpoint in # of iterations')
|
|
|
|
parser.add_argument('--val_tasks', nargs='+', type=str, help='tasks to collect evaluation metrics for')
|
|
parser.add_argument('--val_every', default=int(1e3), type=int, help='how often to run validation in # of iterations')
|
|
parser.add_argument('--val_no_filter', action='store_false', dest='val_filter', help='whether to allow filtering on the validation sets')
|
|
parser.add_argument('--val_batch_size', nargs='+', default=[256], type=int, help='Batch size for validation corresponding to tasks in val tasks')
|
|
|
|
parser.add_argument('--vocab_tasks', nargs='+', type=str, help='tasks to use in the construction of the vocabulary')
|
|
parser.add_argument('--max_output_length', default=100, type=int, help='maximum output length for generation')
|
|
parser.add_argument('--max_effective_vocab', default=int(1e6), type=int, help='max effective vocabulary size for pretrained embeddings')
|
|
parser.add_argument('--max_generative_vocab', default=50000, type=int, help='max vocabulary for the generative softmax')
|
|
parser.add_argument('--max_train_context_length', default=400, type=int, help='maximum length of the contexts during training')
|
|
parser.add_argument('--max_val_context_length', default=400, type=int, help='maximum length of the contexts during validation')
|
|
parser.add_argument('--max_answer_length', default=50, type=int, help='maximum length of answers during training and validation')
|
|
parser.add_argument('--subsample', default=20000000, type=int, help='subsample the datasets')
|
|
parser.add_argument('--preserve_case', action='store_false', dest='lower', help='whether to preserve casing for all text')
|
|
|
|
parser.add_argument('--model', type=str, default='MultitaskQuestionAnsweringNetwork', help='which model to import')
|
|
parser.add_argument('--dimension', default=200, type=int, help='output dimensions for all layers')
|
|
parser.add_argument('--rnn_layers', default=1, type=int, help='number of layers for RNN modules')
|
|
parser.add_argument('--transformer_layers', default=2, type=int, help='number of layers for transformer modules')
|
|
parser.add_argument('--transformer_hidden', default=150, type=int, help='hidden size of the transformer modules')
|
|
parser.add_argument('--transformer_heads', default=3, type=int, help='number of heads for transformer modules')
|
|
parser.add_argument('--dropout_ratio', default=0.2, type=float, help='dropout for the model')
|
|
parser.add_argument('--no_transformer_lr', action='store_false', dest='transformer_lr', help='turns off the transformer learning rate strategy')
|
|
parser.add_argument('--cove', action='store_true', help='whether to use contextualized word vectors (McCann et al. 2017)')
|
|
parser.add_argument('--intermediate_cove', action='store_true', help='whether to use the intermediate layers of contextualized word vectors (McCann et al. 2017)')
|
|
|
|
parser.add_argument('--warmup', default=800, type=int, help='warmup for learning rate')
|
|
parser.add_argument('--grad_clip', default=1.0, type=float, help='gradient clipping')
|
|
parser.add_argument('--beta0', default=0.9, type=float, help='alternative momentum for Adam (only when not using transformer_lr)')
|
|
|
|
parser.add_argument('--load', default=None, type=str, help='path to checkpoint to load model from inside args.save')
|
|
parser.add_argument('--resume', action='store_true', help='whether to resume training with past optimizers')
|
|
|
|
parser.add_argument('--seed', default=123, type=int, help='Random seed.')
|
|
parser.add_argument('--devices', default=[0], nargs='+', type=int, help='a list of devices that can be used for training (multi-gpu currently WIP)')
|
|
parser.add_argument('--backend', default='gloo', type=str, help='backend for distributed training')
|
|
|
|
parser.add_argument('--no_commit', action='store_false', dest='commit', help='do not track the git commit associated with this training run')
|
|
parser.add_argument('--exist_ok', action='store_true', help='Ok if the save directory already exists, i.e. overwrite is ok')
|
|
parser.add_argument('--token_testing', action='store_true', help='if true, sorts all iterators')
|
|
parser.add_argument('--reverse', action='store_true', help='if token_testing and true, sorts all iterators in reverse')
|
|
|
|
args = parser.parse_args()
|
|
if args.model is None:
|
|
args.model = 'mcqa'
|
|
if args.val_tasks is None:
|
|
args.val_tasks = deepcopy(args.train_tasks)
|
|
if 'imdb' in args.val_tasks:
|
|
args.val_tasks.remove('imdb')
|
|
args.world_size = len(args.devices) if args.devices[0] > -1 else -1
|
|
if args.world_size > 1:
|
|
print('multi-gpu training is currently a work in progress')
|
|
return
|
|
args.timestamp = '-'.join(datetime.datetime.now(tz=tz.tzoffset(None, -8*60*60)).strftime("%y/%m/%d/%H/%M/%S.%f").split())
|
|
|
|
if len(args.train_tasks) > 1:
|
|
if args.train_iterations is None:
|
|
args.train_iterations = [1]
|
|
if len(args.train_iterations) < len(args.train_tasks):
|
|
args.train_iterations = len(args.train_tasks) * args.train_iterations
|
|
if len(args.train_batch_tokens) < len(args.train_tasks):
|
|
args.train_batch_tokens = len(args.train_tasks) * args.train_batch_tokens
|
|
if len(args.val_batch_size) < len(args.val_tasks):
|
|
args.val_batch_size = len(args.val_tasks) * args.val_batch_size
|
|
|
|
# postprocess arguments
|
|
if args.commit:
|
|
args.commit = get_commit()
|
|
else:
|
|
args.commit = ''
|
|
train_out = f'{",".join(args.train_tasks)}'
|
|
if len(args.train_tasks) > 1:
|
|
train_out += f'{"-".join([str(x) for x in args.train_iterations])}'
|
|
args.log_dir = os.path.join(args.save, args.timestamp,
|
|
f'{train_out}{(",val=" + ",".join(args.val_tasks)) if args.val_tasks != args.train_tasks else ""},{args.model},' \
|
|
f'{args.world_size}g',
|
|
args.commit[:7])
|
|
args.dist_sync_file = os.path.join(args.log_dir, 'distributed_sync_file')
|
|
|
|
save_args(args)
|
|
|
|
return args
|