genienlp/predict.py

253 lines
9.7 KiB
Python

#!/usr/bin/env python3
import os
from text.torchtext.datasets.generic import Query
from text import torchtext
from argparse import ArgumentParser
import ujson as json
import torch
import numpy as np
import random
from pprint import pformat
from util import get_splits, set_seed, preprocess_examples
from metrics import compute_metrics
import models
def get_all_splits(args, new_vocab):
splits = []
for task in args.tasks:
print(f'Loading {task}')
kwargs = {}
if not 'train' in args.evaluate:
kwargs['train'] = None
if not 'valid' in args.evaluate:
kwargs['validation'] = None
if not 'test' in args.evaluate:
kwargs['test'] = None
s = get_splits(args, task, new_vocab, **kwargs)[0]
preprocess_examples(args, [task], [s], new_vocab, train=False)
splits.append(s)
return splits
def prepare_data(args, FIELD):
new_vocab = torchtext.data.ReversibleField(batch_first=True, init_token='<init>', eos_token='<eos>', lower=args.lower, include_lengths=True)
splits = get_all_splits(args, new_vocab)
new_vocab.build_vocab(*splits)
print(f'Vocabulary has {len(FIELD.vocab)} tokens from training')
args.max_generative_vocab = min(len(FIELD.vocab), args.max_generative_vocab)
FIELD.append_vocab(new_vocab)
print(f'Vocabulary has expanded to {len(FIELD.vocab)} tokens')
char_vectors = torchtext.vocab.CharNGram(cache=args.embeddings)
glove_vectors = torchtext.vocab.GloVe(cache=args.embeddings)
vectors = [char_vectors, glove_vectors]
FIELD.vocab.load_vectors(vectors, True)
FIELD.decoder_to_vocab = {idx: FIELD.vocab.stoi[word] for idx, word in enumerate(FIELD.decoder_itos)}
FIELD.vocab_to_decoder = {idx: FIELD.decoder_stoi[word] for idx, word in enumerate(FIELD.vocab.itos) if word in FIELD.decoder_stoi}
splits = get_all_splits(args, FIELD)
return FIELD, splits
def to_iter(data, bs):
Iterator = torchtext.data.Iterator
it = Iterator(data, batch_size=bs,
device=0, batch_size_fn=None,
train=False, repeat=False, sort=None,
shuffle=None, reverse=False)
return it
def run(args, field, val_sets, model):
set_seed(args)
print(f'Preparing iterators')
iters = [(name, to_iter(x, bs)) for name, x, bs in zip(args.tasks, val_sets, args.val_batch_size)]
def mult(ps):
r = 0
for p in ps:
this_r = 1
for s in p.size():
this_r *= s
r += this_r
return r
params = list(filter(lambda p: p.requires_grad, model.parameters()))
num_param = mult(params)
print(f'{args.model} has {num_param:,} parameters')
if args.gpus > -1:
model.cuda()
model.eval()
for task, it in iters:
prediction_file_name = os.path.join(os.path.splitext(args.best_checkpoint)[0], args.evaluate, task + '.txt')
answer_file_name = os.path.join(os.path.splitext(args.best_checkpoint)[0], args.evaluate, task + '.gold.txt')
results_file_name = answer_file_name.replace('gold', 'results')
if 'sql' in task:
ids_file_name = answer_file_name.replace('gold', 'ids')
if os.path.exists(prediction_file_name):
print('** ', prediction_file_name, ' already exists**')
if os.path.exists(answer_file_name):
print('** ', answer_file_name, ' already exists**')
if os.path.exists(results_file_name):
print('** ', results_file_name, ' already exists**')
with open(results_file_name) as results_file:
for l in results_file:
print(l)
if not 'schema' in task:
continue
for x in [prediction_file_name, answer_file_name, results_file_name]:
os.makedirs(os.path.dirname(x), exist_ok=True)
if not os.path.exists(prediction_file_name):
with open(prediction_file_name, 'a') as prediction_file:
predictions = []
wikisql_ids = []
for batch_idx, batch in enumerate(it):
_, p = model(batch)
p = field.reverse(p)
for i, pp in enumerate(p):
if 'sql' in task:
wikisql_id = int(batch.wikisql_id[i])
wikisql_ids.append(wikisql_id)
prediction_file.write(pp + '\n')
predictions.append(pp)
else:
with open(prediction_file_name) as prediction_file:
predictions = [x.strip() for x in prediction_file.readlines()]
if 'sql' in task:
with open(ids_file_name, 'w') as id_file:
for i in wikisql_ids:
id_file.write(json.dumps(i) + '\n')
def from_all_answers(an):
return [it.dataset.all_answers[sid] for sid in an.tolist()]
if not os.path.exists(answer_file_name):
with open(answer_file_name, 'a') as answer_file:
answers = []
for batch_idx, batch in enumerate(it):
if hasattr(batch, 'wikisql_id'):
a = from_all_answers(batch.wikisql_id.data.cpu())
elif hasattr(batch, 'squad_id'):
a = from_all_answers(batch.squad_id.data.cpu())
elif hasattr(batch, 'woz_id'):
a = from_all_answers(batch.woz_id.data.cpu())
else:
a = field.reverse(batch.answer.data)
for aa in a:
answers.append(aa)
answer_file.write(json.dumps(aa) + '\n')
else:
with open(answer_file_name) as answer_file:
answers = [json.loads(x.strip()) for x in answer_file.readlines()]
if len(answers) > 0:
metrics, answers = compute_metrics(predictions, answers, bleu='iwslt' in task or 'multi30k' in task, dialogue='woz' in task,
rouge='cnn' in task, logical_form='sql' in task, corpus_f1='zre' in task, args=args)
print(metrics)
with open(results_file_name, 'w') as results_file:
results_file.write(json.dumps(metrics) + '\n')
def get_args():
parser = ArgumentParser()
parser.add_argument('--path', required=True)
parser.add_argument('--evaluate', type=str, required=True)
parser.add_argument('--tasks', default=['wikisql', 'woz.en', 'cnn_dailymail', 'iwslt.en.de', 'zre', 'srl', 'squad', 'sst', 'multinli.in.out', 'schema'], nargs='+')
parser.add_argument('--gpus', type=int, help='gpus to use', required=True)
parser.add_argument('--seed', default=123, type=int, help='Random seed.')
parser.add_argument('--data', default='/decaNLP/.data/', type=str, help='where to load data from.')
parser.add_argument('--embeddings', default='/decaNLP/.embeddings', type=str, help='where to save embeddings.')
parser.add_argument('--checkpoint_name')
args = parser.parse_args()
with open(os.path.join(args.path, 'config.json')) as config_file:
config = json.load(config_file)
retrieve = ['model', 'val_batch_size',
'transformer_layers', 'rnn_layers', 'transformer_hidden',
'dimension', 'load', 'max_val_context_length', 'val_batch_size',
'transformer_heads', 'max_output_length', 'max_generative_vocab',
'lower']
for r in retrieve:
setattr(args, r, config[r])
args.dropout_ratio = 0.0
args.task_to_metric = {'cnn_dailymail': 'avg_rouge',
'iwslt.en.de': 'bleu',
'multinli.in.out': 'em',
'squad': 'nf1',
'srl': 'nf1',
'sst': 'em',
'wikisql': 'lfem',
'woz.en': 'joint_goal_em',
'zre': 'corpus_f1',
'schema': 'em'}
if os.path.exists(os.path.join(args.path, 'process_0.log')):
args.best_checkpoint = get_best(args)
else:
args.best_checkpoint = os.path.join(args.path, args.checkpoint_name)
return args
def get_best(args):
with open(os.path.join(args.path, 'config.json')) as f:
save_every = json.load(f)['save_every']
with open(os.path.join(args.path, 'process_0.log')) as f:
lines = f.readlines()
best_score = 0
best_it = 0
deca_scores = {}
for l in lines:
if 'val' in l:
try:
task = l.split('val_')[1].split(':')[0]
except Exception as e:
print(e)
continue
it = int(l.split('iteration_')[1].split(':')[0])
metric = args.task_to_metric[task]
score = float(l.split(metric+'_')[1].split(':')[0])
if it in deca_scores:
deca_scores[it]['deca'] += score
deca_scores[it][metric] = score
else:
deca_scores[it] = {'deca': score, metric: score}
if deca_scores[it]['deca'] > best_score:
best_score = deca_scores[it]['deca']
best_it = it
print(best_it)
print(best_score)
return os.path.join(args.path, f'iteration_{int(best_it)}.pth')
if __name__ == '__main__':
args = get_args()
print(f'Arguments:\n{pformat(vars(args))}')
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
print(f'Loading from {args.best_checkpoint}')
save_dict = torch.load(args.best_checkpoint)
field = save_dict['field']
print(f'Initializing Model')
Model = getattr(models, args.model)
model = Model(field, args)
model.load_state_dict(save_dict['model_state_dict'])
field, splits = prepare_data(args, field)
model.set_embeddings(field.vocab.vectors)
run(args, field, splits, model)