genienlp/decanlp/models/multitask_question_answerin...

357 lines
20 KiB
Python

#
# Copyright (c) 2018, Salesforce, Inc.
# The Board of Trustees of the Leland Stanford Junior University
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import math
import numpy as np
import json
import torch
from torch import nn
from torch.nn import functional as F
from ..util import get_trainable_params, set_seed
from ..modules import expectedBLEU, expectedMultiBleu, matrixBLEU
from cove import MTLSTM
from allennlp.modules.elmo import Elmo, batch_to_ids
from .common import *
class MultitaskQuestionAnsweringNetwork(nn.Module):
def __init__(self, field, args):
super().__init__()
self.field = field
self.args = args
self.pad_idx = self.field.vocab.stoi[self.field.pad_token]
self.device = set_seed(args)
def dp(args):
return args.dropout_ratio if args.rnn_layers > 1 else 0.
if self.args.glove_and_char:
self.encoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio, project=not args.cove)
if self.args.cove or self.args.intermediate_cove:
self.cove = MTLSTM(model_cache=args.embeddings, layer0=args.intermediate_cove, layer1=args.cove)
cove_params = get_trainable_params(self.cove)
for p in cove_params:
p.requires_grad = False
cove_dim = int(args.intermediate_cove) * 600 + int(args.cove) * 600 + 400 # the last 400 is for GloVe and char n-gram embeddings
self.project_cove = Feedforward(cove_dim, args.dimension)
if -1 not in self.args.elmo:
options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json"
weight_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5"
self.elmo = Elmo(options_file, weight_file, 3, dropout=0.0, do_layer_norm=False)
elmo_params = get_trainable_params(self.elmo)
for p in elmo_params:
p.requires_grad = False
elmo_dim = 1024 * len(self.args.elmo)
self.project_elmo = Feedforward(elmo_dim, args.dimension)
if self.args.glove_and_char:
self.project_embeddings = Feedforward(2 * args.dimension, args.dimension, dropout=0.0)
self.decoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio, project=True)
self.bilstm_before_coattention = PackedLSTM(args.dimension, args.dimension,
batch_first=True, bidirectional=True, num_layers=1, dropout=0)
self.coattention = CoattentiveLayer(args.dimension, dropout=0.3)
dim = 2*args.dimension + args.dimension + args.dimension
self.context_bilstm_after_coattention = PackedLSTM(dim, args.dimension,
batch_first=True, dropout=dp(args), bidirectional=True,
num_layers=args.rnn_layers)
self.self_attentive_encoder_context = TransformerEncoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
self.bilstm_context = PackedLSTM(args.dimension, args.dimension,
batch_first=True, dropout=dp(args), bidirectional=True,
num_layers=args.rnn_layers)
self.question_bilstm_after_coattention = PackedLSTM(dim, args.dimension,
batch_first=True, dropout=dp(args), bidirectional=True,
num_layers=args.rnn_layers)
self.self_attentive_encoder_question = TransformerEncoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
self.bilstm_question = PackedLSTM(args.dimension, args.dimension,
batch_first=True, dropout=dp(args), bidirectional=True,
num_layers=args.rnn_layers)
self.self_attentive_decoder = TransformerDecoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
self.dual_ptr_rnn_decoder = DualPtrRNNDecoder(args.dimension, args.dimension,
dropout=args.dropout_ratio, num_layers=args.rnn_layers)
self.generative_vocab_size = min(len(field.vocab), args.max_generative_vocab)
self.out = nn.Linear(args.dimension, self.generative_vocab_size)
self.dropout = nn.Dropout(0.4)
def set_embeddings(self, embeddings):
self.encoder_embeddings.set_embeddings(embeddings)
self.decoder_embeddings.set_embeddings(embeddings)
def forward(self, batch, iteration):
context, context_lengths, context_limited, context_elmo = batch.context, batch.context_lengths, batch.context_limited, batch.context_elmo
question, question_lengths, question_limited, question_elmo = batch.question, batch.question_lengths, batch.question_limited, batch.question_elmo
answer, answer_lengths, answer_limited = batch.answer, batch.answer_lengths, batch.answer_limited
oov_to_limited_idx, limited_idx_to_full_idx = batch.oov_to_limited_idx, batch.limited_idx_to_full_idx
def map_to_full(x):
return limited_idx_to_full_idx[x]
self.map_to_full = map_to_full
if -1 not in self.args.elmo:
def elmo(z, layers, device):
e = self.elmo(batch_to_ids(z).to(device))['elmo_representations']
return torch.cat([e[x] for x in layers], -1)
context_elmo = self.project_elmo(elmo(context_elmo, self.args.elmo, context.device).detach())
question_elmo = self.project_elmo(elmo(question_elmo, self.args.elmo, question.device).detach())
if self.args.glove_and_char:
context_embedded = self.encoder_embeddings(context)
question_embedded = self.encoder_embeddings(question)
if self.args.cove:
context_embedded = self.project_cove(torch.cat([self.cove(context_embedded[:, :, -300:], context_lengths), context_embedded], -1).detach())
question_embedded = self.project_cove(torch.cat([self.cove(question_embedded[:, :, -300:], question_lengths), question_embedded], -1).detach())
if -1 not in self.args.elmo:
context_embedded = self.project_embeddings(torch.cat([context_embedded, context_elmo], -1))
question_embedded = self.project_embeddings(torch.cat([question_embedded, question_elmo], -1))
else:
context_embedded, question_embedded = context_elmo, question_elmo
context_encoded = self.bilstm_before_coattention(context_embedded, context_lengths)[0]
question_encoded = self.bilstm_before_coattention(question_embedded, question_lengths)[0]
context_padding = context.data == self.pad_idx
question_padding = question.data == self.pad_idx
coattended_context, coattended_question = self.coattention(context_encoded, question_encoded, context_padding, question_padding)
context_summary = torch.cat([coattended_context, context_encoded, context_embedded], -1)
condensed_context, _ = self.context_bilstm_after_coattention(context_summary, context_lengths)
self_attended_context = self.self_attentive_encoder_context(condensed_context, padding=context_padding)
final_context, (context_rnn_h, context_rnn_c) = self.bilstm_context(self_attended_context[-1], context_lengths)
context_rnn_state = [self.reshape_rnn_state(x) for x in (context_rnn_h, context_rnn_c)]
question_summary = torch.cat([coattended_question, question_encoded, question_embedded], -1)
condensed_question, _ = self.question_bilstm_after_coattention(question_summary, question_lengths)
self_attended_question = self.self_attentive_encoder_question(condensed_question, padding=question_padding)
final_question, (question_rnn_h, question_rnn_c) = self.bilstm_question(self_attended_question[-1], question_lengths)
question_rnn_state = [self.reshape_rnn_state(x) for x in (question_rnn_h, question_rnn_c)]
context_indices = context_limited if context_limited is not None else context
question_indices = question_limited if question_limited is not None else question
answer_indices = answer_limited if answer_limited is not None else answer
pad_idx = self.field.decoder_stoi[self.field.pad_token]
context_padding = context_indices.data == pad_idx
question_padding = question_indices.data == pad_idx
self.dual_ptr_rnn_decoder.applyMasks(context_padding, question_padding)
if self.training:
answer_padding = (answer_indices.data == pad_idx)[:, :-1]
answer_embedded = self.decoder_embeddings(answer)
self_attended_decoded = self.self_attentive_decoder(answer_embedded[:, :-1].contiguous(), self_attended_context, context_padding=context_padding, answer_padding=answer_padding, positional_encodings=True)
decoder_outputs = self.dual_ptr_rnn_decoder(self_attended_decoded,
final_context, final_question, hidden=context_rnn_state)
rnn_output, context_attention, question_attention, context_alignment, question_alignment, vocab_pointer_switch, context_question_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch, context_question_switch,
context_attention, question_attention,
context_indices, question_indices,
oov_to_limited_idx)
if self.args.use_bleu_loss and iteration >= self.args.loss_switch * max(self.args.train_iterations):
max_order = 4
targets = answer_indices[:, 1:].contiguous()
batch_size = targets.size(0)
reference_lengths = [l-1 for l in answer_lengths]
translation_len = max(reference_lengths)
translation_lengths = torch.tensor([translation_len] * batch_size, device=self.device)
bleu_loss_smoothed = expectedMultiBleu.bleu(probs, targets, translation_lengths, reference_lengths, max_order=max_order, smooth=True)
loss = -1 * bleu_loss_smoothed[0]
elif self.args.use_maxmargin_loss:
targets = answer_indices[:, 1:].contiguous()
loss = max_margin_loss(probs, targets, pad_idx=pad_idx)
else:
probs, targets = mask(answer_indices[:, 1:].contiguous(), probs.contiguous(), pad_idx=pad_idx)
loss = F.nll_loss(probs.log(), targets)
return loss, None
else:
return None, self.greedy(self_attended_context, final_context, final_question,
context_indices, question_indices,
oov_to_limited_idx, rnn_state=context_rnn_state).data
def reshape_rnn_state(self, h):
return h.view(h.size(0) // 2, 2, h.size(1), h.size(2)) \
.transpose(1, 2).contiguous() \
.view(h.size(0) // 2, h.size(1), h.size(2) * 2).contiguous()
def probs(self, generator, outputs, vocab_pointer_switches, context_question_switches,
context_attention, question_attention,
context_indices, question_indices,
oov_to_limited_idx):
size = list(outputs.size())
size[-1] = self.generative_vocab_size
scores = generator(outputs.view(-1, outputs.size(-1))).view(size)
p_vocab = F.softmax(scores, dim=scores.dim()-1)
scaled_p_vocab = vocab_pointer_switches.expand_as(p_vocab) * p_vocab
effective_vocab_size = self.generative_vocab_size + len(oov_to_limited_idx)
if self.generative_vocab_size < effective_vocab_size:
size[-1] = effective_vocab_size - self.generative_vocab_size
buff = scaled_p_vocab.new_full(size, EPSILON)
scaled_p_vocab = torch.cat([scaled_p_vocab, buff], dim=buff.dim()-1)
# p_context_ptr
scaled_p_vocab.scatter_add_(scaled_p_vocab.dim()-1, context_indices.unsqueeze(1).expand_as(context_attention),
(context_question_switches * (1 - vocab_pointer_switches)).expand_as(context_attention) * context_attention)
# p_question_ptr
scaled_p_vocab.scatter_add_(scaled_p_vocab.dim()-1, question_indices.unsqueeze(1).expand_as(question_attention),
((1 - context_question_switches) * (1 - vocab_pointer_switches)).expand_as(question_attention) * question_attention)
return scaled_p_vocab
def greedy(self, self_attended_context, context, question, context_indices, question_indices, oov_to_limited_idx, rnn_state=None):
B, TC, C = context.size()
T = self.args.max_output_length
outs = context.new_full((B, T), self.field.decoder_stoi['<pad>'], dtype=torch.long)
hiddens = [self_attended_context[0].new_zeros((B, T, C))
for l in range(len(self.self_attentive_decoder.layers) + 1)]
hiddens[0] = hiddens[0] + positional_encodings_like(hiddens[0])
eos_yet = context.new_zeros((B, )).byte()
rnn_output, context_alignment, question_alignment = None, None, None
for t in range(T):
if t == 0:
embedding = self.decoder_embeddings(
self_attended_context[-1].new_full((B, 1), self.field.vocab.stoi['<init>'], dtype=torch.long), [1]*B)
else:
embedding = self.decoder_embeddings(outs[:, t - 1].unsqueeze(1), [1]*B)
hiddens[0][:, t] = hiddens[0][:, t] + (math.sqrt(self.self_attentive_decoder.d_model) * embedding).squeeze(1)
for l in range(len(self.self_attentive_decoder.layers)):
hiddens[l + 1][:, t] = self.self_attentive_decoder.layers[l].feedforward(
self.self_attentive_decoder.layers[l].attention(
self.self_attentive_decoder.layers[l].selfattn(hiddens[l][:, t], hiddens[l][:, :t + 1], hiddens[l][:, :t + 1])
, self_attended_context[l], self_attended_context[l]))
decoder_outputs = self.dual_ptr_rnn_decoder(hiddens[-1][:, t].unsqueeze(1),
context, question,
context_alignment=context_alignment, question_alignment=question_alignment,
hidden=rnn_state, output=rnn_output)
rnn_output, context_attention, question_attention, context_alignment, question_alignment, vocab_pointer_switch, context_question_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch, context_question_switch,
context_attention, question_attention,
context_indices, question_indices,
oov_to_limited_idx)
pred_probs, preds = probs.max(-1)
preds = preds.squeeze(1)
eos_yet = eos_yet | (preds == self.field.decoder_stoi['<eos>'])
outs[:, t] = preds.cpu().apply_(self.map_to_full)
if eos_yet.all():
break
return outs
class DualPtrRNNDecoder(nn.Module):
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1):
super().__init__()
self.d_hid = d_hid
self.d_in = d_in
self.num_layers = num_layers
self.dropout = nn.Dropout(dropout)
self.input_feed = True
if self.input_feed:
d_in += 1 * d_hid
self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout)
self.context_attn = LSTMDecoderAttention(d_hid, dot=True)
self.question_attn = LSTMDecoderAttention(d_hid, dot=True)
self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
self.context_question_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
def forward(self, input, context, question, output=None, hidden=None, context_alignment=None, question_alignment=None):
context_output = output.squeeze(1) if output is not None else self.make_init_output(context)
context_alignment = context_alignment if context_alignment is not None else self.make_init_output(context)
question_alignment = question_alignment if question_alignment is not None else self.make_init_output(question)
context_outputs, vocab_pointer_switches, context_question_switches, context_attentions, question_attentions, context_alignments, question_alignments = [], [], [], [], [], [], []
for emb_t in input.split(1, dim=1):
emb_t = emb_t.squeeze(1)
context_output = self.dropout(context_output)
if self.input_feed:
emb_t = torch.cat([emb_t, context_output], 1)
dec_state, hidden = self.rnn(emb_t, hidden)
context_output, context_attention, context_alignment = self.context_attn(dec_state, context)
question_output, question_attention, question_alignment = self.question_attn(dec_state, question)
vocab_pointer_switch = self.vocab_pointer_switch(torch.cat([dec_state, context_output, emb_t], -1))
context_question_switch = self.context_question_switch(torch.cat([dec_state, question_output, emb_t], -1))
context_output = self.dropout(context_output)
context_outputs.append(context_output)
vocab_pointer_switches.append(vocab_pointer_switch)
context_question_switches.append(context_question_switch)
context_attentions.append(context_attention)
context_alignments.append(context_alignment)
question_attentions.append(question_attention)
question_alignments.append(question_alignment)
context_outputs, vocab_pointer_switches, context_question_switches, context_attention, question_attention = [self.package_outputs(x) for x in [context_outputs, vocab_pointer_switches, context_question_switches, context_attentions, question_attentions]]
return context_outputs, context_attention, question_attention, context_alignment, question_alignment, vocab_pointer_switches, context_question_switches, hidden
def applyMasks(self, context_mask, question_mask):
self.context_attn.applyMasks(context_mask)
self.question_attn.applyMasks(question_mask)
def make_init_output(self, context):
batch_size = context.size(0)
h_size = (batch_size, self.d_hid)
return context.new_zeros(h_size)
def package_outputs(self, outputs):
outputs = torch.stack(outputs, dim=1)
return outputs