197 lines
7.6 KiB
Python
197 lines
7.6 KiB
Python
from text import torchtext
|
|
import time
|
|
import os
|
|
import sys
|
|
import torch
|
|
import random
|
|
import numpy as np
|
|
|
|
|
|
def get_context_question(ex, context, question, field):
|
|
return ex.context_special + ex.context + ex.question_special + ex.question
|
|
|
|
|
|
def preprocess_examples(args, tasks, splits, field, logger=None, train=True):
|
|
min_length = 1
|
|
max_context_length = args.max_train_context_length if train else args.max_val_context_length
|
|
is_too_long = lambda ex: (len(ex.answer)>args.max_answer_length or
|
|
len(ex.context)>max_context_length)
|
|
is_too_short = lambda ex: (len(ex.answer)<min_length or
|
|
len(ex.context)<min_length)
|
|
|
|
for task, s in zip(tasks, splits):
|
|
if logger is not None:
|
|
logger.info(f'{task} has {len(s.examples)} examples')
|
|
if 'cnn' in task or 'dailymail' in task or 'imdb' in task:
|
|
for x in s.examples:
|
|
x.context = x.context[:max_context_length]
|
|
|
|
if train:
|
|
l = len(s.examples)
|
|
s.examples = [ex for ex in s.examples if not is_too_long(ex)]
|
|
if len(s.examples) < l:
|
|
if logger is not None:
|
|
logger.info(f'Filtering out long {task} examples: {l} -> {len(s.examples)}')
|
|
|
|
l = len(s.examples)
|
|
s.examples = [ex for ex in s.examples if not is_too_short(ex)]
|
|
if len(s.examples) < l:
|
|
if logger is not None:
|
|
logger.info(f'Filtering out short {task} examples: {l} -> {len(s.examples)}')
|
|
|
|
l = len(s.examples)
|
|
s.examples = [ex for ex in s.examples if 'This page includes the show' not in ex.answer]
|
|
if len(s.examples) < l:
|
|
if logger is not None:
|
|
logger.info(f'Filtering {task} examples with a dummy summary: {l} -> {len(s.examples)} ')
|
|
|
|
if logger is not None:
|
|
context_lengths = [len(ex.context) for ex in s.examples]
|
|
question_lengths = [len(ex.question) for ex in s.examples]
|
|
answer_lengths = [len(ex.answer) for ex in s.examples]
|
|
|
|
logger.info(f'{task} context lengths (min, mean, max): {np.min(context_lengths)}, {int(np.mean(context_lengths))}, {np.max(context_lengths)}')
|
|
logger.info(f'{task} question lengths (min, mean, max): {np.min(question_lengths)}, {int(np.mean(question_lengths))}, {np.max(question_lengths)}')
|
|
logger.info(f'{task} answer lengths (min, mean, max): {np.min(answer_lengths)}, {int(np.mean(answer_lengths))}, {np.max(answer_lengths)}')
|
|
|
|
for x in s.examples:
|
|
x.context_question = get_context_question(x, x.context, x.question, field)
|
|
|
|
if logger is not None:
|
|
logger.info('Tokenized examples:')
|
|
for ex in s.examples[:10]:
|
|
logger.info('Context: ' + ' '.join(ex.context))
|
|
logger.info('Question: ' + ' '.join(ex.question))
|
|
logger.info(' '.join(ex.context_question))
|
|
logger.info('Answer: ' + ' '.join(ex.answer))
|
|
|
|
|
|
|
|
def set_seed(args, rank=None):
|
|
if rank is not None:
|
|
device = args.gpus[rank]
|
|
else:
|
|
if isinstance(args.gpus, list):
|
|
device = args.gpus[0]
|
|
else:
|
|
device = args.gpus
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = f'{device}'
|
|
print(f'device: {device}')
|
|
|
|
np.random.seed(args.seed)
|
|
random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
torch.cuda.manual_seed(args.seed)
|
|
|
|
|
|
def count_params(params):
|
|
def mult(ps):
|
|
r = 0
|
|
for p in ps:
|
|
this_r = 1
|
|
for s in p.size():
|
|
this_r *= s
|
|
r += this_r
|
|
return r
|
|
return mult(params)
|
|
|
|
|
|
def get_trainable_params(model):
|
|
return list(filter(lambda p: p.requires_grad, model.parameters()))
|
|
|
|
|
|
def elapsed_time(log):
|
|
t = time.time() - log.start
|
|
day = int(t // (24 * 3600))
|
|
t = t % (24 * 3600)
|
|
hour = int(t // 3600)
|
|
t %= 3600
|
|
minutes = int(t // 60)
|
|
t %= 60
|
|
seconds = int(t)
|
|
return f'{day:02}:{hour:02}:{minutes:02}:{seconds:02}'
|
|
|
|
|
|
def get_splits(args, task, FIELD, **kwargs):
|
|
if 'multi30k' in task:
|
|
src, trg = ['.'+x for x in task.split('.')[1:]]
|
|
split = torchtext.datasets.generic.Multi30k.splits(exts=(src, trg),
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'iwslt' in task:
|
|
src, trg = ['.'+x for x in task.split('.')[1:]]
|
|
split = torchtext.datasets.generic.IWSLT.splits(exts=(src, trg),
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'squad' in task:
|
|
split = torchtext.datasets.generic.SQuAD.splits(
|
|
fields=FIELD, root=args.data, description=task, **kwargs)
|
|
elif 'wikisql' in task:
|
|
split = torchtext.datasets.generic.WikiSQL.splits(
|
|
fields=FIELD, root=args.data, query_as_question='query_as_question' in task, **kwargs)
|
|
elif 'ontonotes.ner' in task:
|
|
split_task = task.split('.')
|
|
_, _, subtask, nones, counting = split_task
|
|
split = torchtext.datasets.generic.OntoNotesNER.splits(
|
|
subtask=subtask, nones=True if nones == 'nones' else False,
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'woz' in task:
|
|
split = torchtext.datasets.generic.WOZ.splits(description=task,
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'multinli' in task:
|
|
split = torchtext.datasets.generic.MultiNLI.splits(description=task,
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'srl' in task:
|
|
split = torchtext.datasets.generic.SRL.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'snli' in task:
|
|
split = torchtext.datasets.generic.SNLI.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'schema' in task:
|
|
split = torchtext.datasets.generic.WinogradSchema.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif task == 'cnn':
|
|
split = torchtext.datasets.generic.CNN.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif task == 'dailymail':
|
|
split = torchtext.datasets.generic.DailyMail.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif task == 'cnn_dailymail':
|
|
split_cnn = torchtext.datasets.generic.CNN.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
split_dm = torchtext.datasets.generic.DailyMail.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
for scnn, sdm in zip(split_cnn, split_dm):
|
|
scnn.examples.extend(sdm)
|
|
split = split_cnn
|
|
elif 'sst' in task:
|
|
split = torchtext.datasets.generic.SST.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'imdb' in task:
|
|
kwargs['validation'] = None
|
|
split = torchtext.datasets.generic.IMDb.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif 'zre' in task:
|
|
split = torchtext.datasets.generic.ZeroShotRE.splits(
|
|
fields=FIELD, root=args.data, **kwargs)
|
|
elif os.path.exists(os.path.join(args.data, task)):
|
|
split = torchtext.datasets.generic.JSON.splits(
|
|
fields=FIELD, root=args.data, name=task, **kwargs)
|
|
return split
|
|
|
|
|
|
def batch_fn(new, i, sofar):
|
|
prev_max_len = sofar / (i - 1) if i > 1 else 0
|
|
return max(len(new.context), 5*len(new.answer), prev_max_len) * i
|
|
|
|
|
|
def pad(x, new_channel, dim, val=None):
|
|
if x.size(dim) > new_channel:
|
|
x = x.narrow(dim, 0, new_channel)
|
|
channels = x.size()
|
|
assert (new_channel >= channels[dim])
|
|
if new_channel == channels[dim]:
|
|
return x
|
|
size = list(channels)
|
|
size[dim] = new_channel - size[dim]
|
|
padding = x.new(*size).fill_(val)
|
|
return torch.cat([x, padding], dim)
|