genienlp/decanlp/train.py

497 lines
22 KiB
Python

#
# Copyright (c) 2018, Salesforce, Inc.
# The Board of Trustees of the Leland Stanford Junior University
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import math
import time
import sys
from copy import deepcopy
import logging
from pprint import pformat
from logging import handlers
import numpy as np
from .utils.model_utils import init_model
import torch
from .text import torchtext
from tensorboardX import SummaryWriter
from . import arguments
from .validate import validate
from .multiprocess import Multiprocess
from .util import elapsed_time, batch_fn, set_seed, preprocess_examples, get_trainable_params
from .utils.saver import Saver
from .utils.embeddings import load_embeddings
def initialize_logger(args, rank='main'):
# set up file logger
logger = logging.getLogger(f'process_{rank}')
logger.setLevel(logging.DEBUG)
handler = handlers.RotatingFileHandler(os.path.join(args.log_dir, f'process_{rank}.log'), maxBytes=1024*1024*10, backupCount=1)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(name)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
logger.propagate = False
return logger
def log(rank='main'):
return logging.getLogger(f'process_{rank}')
def prepare_data(args, field, logger):
if field is None:
logger.info(f'Constructing field')
FIELD = torchtext.data.ReversibleField(batch_first=True, init_token='<init>', eos_token='<eos>', lower=args.lower, include_lengths=True)
else:
FIELD = field
train_sets, val_sets, aux_sets, vocab_sets = [], [], [], []
for task in args.train_tasks:
logger.info(f'Loading {task.name}')
kwargs = {'test': None}
kwargs['subsample'] = args.subsample
kwargs['validation'] = None
if args.use_curriculum:
kwargs['curriculum'] = True
kwargs['skip_cache_bool'] = args.skip_cache_bool
kwargs['cached_path'] = args.cached
logger.info(f'Adding {task.name} to training datasets')
split = task.get_splits(FIELD, args.data, **kwargs)
if args.use_curriculum:
assert len(split) == 2
aux_sets.append(split[1])
logger.info(f'{task.name} has {len(split[1])} auxiliary examples')
else:
assert len(split) == 1
train_sets.append(split[0])
logger.info(f'{task.name} has {len(split[0])} training examples')
if args.vocab_tasks is not None and task.name in args.vocab_tasks:
vocab_sets.extend(split)
for task in args.val_tasks:
logger.info(f'Loading {task.name}')
kwargs = {'test': None}
kwargs['subsample'] = args.subsample
kwargs['train'] = None
kwargs['skip_cache_bool'] = args.skip_cache_bool
kwargs['cached_path'] = args.cached
logger.info(f'Adding {task.name} to validation datasets')
split = task.get_splits(FIELD, args.data, **kwargs)
assert len(split) == 1
logger.info(f'{task.name} has {len(split[0])} validation examples')
val_sets.append(split[0])
if args.vocab_tasks is not None and task.name in args.vocab_tasks:
vocab_sets.extend(split)
if args.load is None:
vectors = load_embeddings(args, logger)
vocab_sets = (train_sets + val_sets) if len(vocab_sets) == 0 else vocab_sets
logger.info(f'Building vocabulary')
FIELD.build_vocab(*vocab_sets, max_size=args.max_effective_vocab, vectors=vectors)
FIELD.decoder_itos = FIELD.vocab.itos[:args.max_generative_vocab]
FIELD.decoder_stoi = {word: idx for idx, word in enumerate(FIELD.decoder_itos)}
FIELD.decoder_to_vocab = {idx: FIELD.vocab.stoi[word] for idx, word in enumerate(FIELD.decoder_itos)}
FIELD.vocab_to_decoder = {idx: FIELD.decoder_stoi[word] for idx, word in enumerate(FIELD.vocab.itos) if word in FIELD.decoder_stoi}
logger.info(f'Vocabulary has {len(FIELD.vocab)} tokens')
logger.debug(f'The first 200 tokens:')
logger.debug(FIELD.vocab.itos[:200])
if args.use_curriculum:
logger.info('Preprocessing auxiliary data for curriculum')
preprocess_examples(args, args.train_tasks, aux_sets, FIELD, logger, train=True)
logger.info('Preprocessing training data')
preprocess_examples(args, args.train_tasks, train_sets, FIELD, logger, train=True)
logger.info('Preprocessing validation data')
preprocess_examples(args, args.val_tasks, val_sets, FIELD, logger, train=args.val_filter)
return FIELD, train_sets, val_sets, aux_sets
def to_iter(args, world_size, val_batch_size, data, device, train=True, token_testing=False, sort=None):
sort = sort if not token_testing else True
shuffle = None if not token_testing else False
reverse = args.reverse
Iterator = torchtext.data.BucketIterator if train else torchtext.data.Iterator
it = Iterator(data, batch_size=val_batch_size,
device=device, batch_size_fn=batch_fn if train else None,
distributed=world_size>1, train=train, repeat=train, sort=sort,
shuffle=shuffle, reverse=reverse)
return it
def get_learning_rate(i, args):
transformer_lr = 1. / math.sqrt(args.dimension) * min(
1 / math.sqrt(i), i / (args.warmup * math.sqrt(args.warmup)))
if 'adam' not in args.optimizer.lower():
transformer_lr = transformer_lr * math.sqrt(args.dimension * args.warmup) * args.sgd_lr
return transformer_lr
def step(model, batch, opt, iteration, field, task, lr=None, grad_clip=None, writer=None, it=None, rank=0):
model.train()
opt.zero_grad()
loss, predictions = model(batch, iteration)
loss.backward()
trainable_params = get_trainable_params(model, name=True)
logger = log(rank)
Flag = False
for name, param in trainable_params:
if param.grad is not None and torch.isnan(param.grad).any():
logger.warning(f'param name is: {name}')
logger.warning(f'param value is: {param}')
logger.warning(f'param gradient is: {param.grad}')
Flag = True
if Flag:
return None, {}, None
if lr is not None:
opt.param_groups[0]['lr'] = lr
grad_norm = None
if grad_clip > 0.0:
grad_norm = torch.nn.utils.clip_grad_norm_(model.params, grad_clip)
opt.step()
return loss.item(), {}, grad_norm
def update_fraction(args, task_iteration):
if args.curriculum_strategy == 'linear':
next_fraction = args.curriculum_rate * task_iteration
elif args. curriculum_strategy == 'exp':
next_fraction = args.curriculum_rate * np.exp(task_iteration)
fraction = min(args.curriculum_max_frac, next_fraction)
return fraction
def train(args, model, opt, train_sets, train_iterations, field, rank=0, world_size=1,
log_every=10, val_every=100, save_every=1000, rounds=False, val_sets=[], aux_sets=[], writer=None, start_iteration=1, rnd=1, best_decascore=None):
"""main training function"""
device = next(model.parameters()).device
logger = log(rank)
local_loss, num_examples, len_contexts, len_answers, iteration = 0, 0, 0, 0, start_iteration
train_iter_deep = deepcopy(train_iterations)
local_train_metric_dict = dict()
task_iteration = dict()
task_done = dict()
task_fraction = dict()
for task in args.train_tasks:
task_iteration[task] = 1
task_done[task] = False
task_fraction[task] = 0.0
saver = Saver(args.log_dir, world_size, args.max_to_keep)
epoch = 0
logger.info(f'Preparing iterators')
train_iters = [(task, to_iter(args, world_size, tok, x, device, token_testing=args.token_testing))
for task, x, tok in zip(args.train_tasks, train_sets, args.train_batch_tokens)]
train_iters = [(task, iter(train_iter)) for task, train_iter in train_iters]
val_iters = [(task, to_iter(args, world_size, tok, x, device, train=False, token_testing=args.token_testing, sort=False if 'sql' in task.name else None))
for task, x, tok in zip(args.val_tasks, val_sets, args.val_batch_size)]
if args.use_curriculum:
aux_iters = [(name, to_iter(args, world_size, tok, x, device, token_testing=args.token_testing))
for name, x, tok in zip(args.train_tasks, aux_sets, args.train_batch_tokens)]
aux_iters = [(task, iter(aux_iter)) for task, aux_iter in aux_iters]
zero_loss = 0
logger.info(f'Begin Training')
while True:
# For some number of rounds, we 'jump start' some subset of the tasks
# by training them and not others
# once the specified number of rounds is completed,
# switch to normal round robin training
if rnd < args.jump_start:
train_iterations = [0]*len(train_iterations)
for j in range(args.n_jump_start): train_iterations[j] = 1
else:
train_iterations = train_iter_deep
for task_idx, (task, train_iter)in enumerate(train_iters):
task_iterations = train_iterations[task_idx] if train_iterations is not None else None
if task_iterations == 0:
continue
if task_iterations is not None and task_iteration[task] > task_iterations:
task_done[task] = True
continue
if args.use_curriculum:
aux_iter = aux_iters[task_idx][1]
prob = np.random.choice(['train', 'aux'], p=[1-task_fraction[task], task_fraction[task]])
if prob == 'aux':
batch = next(aux_iter)
elif prob == 'train':
batch = next(train_iter)
else:
batch = next(train_iter)
# run only once
for _ in range(1):
if not args.resume or iteration > start_iteration:
task_progress = f'{task_iteration[task]}/{task_iterations}:' if task_iterations is not None else ''
round_progress = f'round_{rnd}:' if rounds else ''
# validate
deca_score = None
if (val_every is not None and
((iteration % args.val_every == 0 % args.val_every) or
(args.load and iteration == start_iteration + 1))):
deca_score = 0
for val_task_idx, (val_task, val_iter) in enumerate(val_iters):
val_loss, metric_dict = validate(val_task, val_iter, model, logger, field, world_size, rank, iteration, num_print=args.num_print, args=args)
if val_loss is not None:
log_entry = f'{args.timestamp}:{elapsed_time(logger)}:iteration_{iteration}:{round_progress}train_{task.name}:{task_progress}val_{val_task.name}:val_loss{val_loss.item():.4f}:'
writer.add_scalar(f'loss/{val_task.name}/val', val_loss.item(), iteration)
else:
log_entry = f'{args.timestamp}:{elapsed_time(logger)}:iteration_{iteration}:{round_progress}train_{task.name}:{task_progress}val_{val_task.name}:'
metric_entry = ''
for metric_key, metric_value in metric_dict.items():
metric_entry += f'{metric_key}_{metric_value:.2f}:'
metric_entry = metric_entry[:-1]
deca_score += metric_dict[val_task.metrics[0]]
# val log
logger.info(log_entry + metric_entry)
if writer is not None:
for metric_key, metric_value in metric_dict.items():
writer.add_scalar(f'{metric_key}/{val_task.name}/val', metric_value, iteration)
writer.add_scalar(f'{val_task.name}/{metric_key}/val', metric_value, iteration)
if writer is not None:
writer.add_scalar('deca/val', deca_score, iteration)
logger.info(f'{args.timestamp}:{elapsed_time(logger)}:iteration_{iteration}:{round_progress}train_{task.name}:{task_progress}val_deca:deca_{deca_score:.2f}')
# saving
if save_every is not None and (iteration % args.save_every == 0):
if rank is not None and rank == 0:
should_save_best = False
if deca_score is not None and (best_decascore is None or best_decascore < deca_score):
best_decascore = deca_score
should_save_best = True
save_model_state_dict = {'model_state_dict': {k: v.cpu() for k, v in model.state_dict().items()}, 'field': field,
'best_decascore': best_decascore}
save_opt_state_dict = opt.state_dict()
save_opt_state_dict.update({'start_iteration': iteration})
if world_size > 1:
torch.distributed.barrier()
saver.save(save_model_state_dict, save_opt_state_dict, global_step=iteration)
if should_save_best:
logger.info(f'{args.timestamp}:{elapsed_time(logger)}:iteration_{iteration}:{round_progress}train_{task.name}:{task_progress}found new best model')
torch.save(save_model_state_dict, os.path.join(args.log_dir, 'best.pth'))
if world_size > 1:
torch.distributed.barrier()
torch.save(save_opt_state_dict, os.path.join(args.log_dir, 'best_optim.pth'))
if world_size > 1:
torch.distributed.barrier()
# lr update
lr = opt.param_groups[0]['lr']
if args.warmup > 0 and args.transformer_lr:
lr = get_learning_rate(iteration, args)
# param update
loss, train_metric_dict, grad_norm = step(model, batch, opt, iteration, field, task, lr=lr, grad_clip=args.grad_clip, writer=writer, it=train_iter, rank=rank)
if loss is None:
logger.info('Encountered NAN loss during training... Continue training ignoring the current batch')
continue
if loss < 1e-5:
zero_loss += 1
if zero_loss >= 100:
logger.info('Found loss less than 1e-5 for 100 steps, stopping.')
return
else:
zero_loss = 0
# update curriculum fraction
if args.use_curriculum:
task_fraction[task] = update_fraction(args, task_iteration[task])
# train metrics
local_loss += loss
for metric_name, metric_val in train_metric_dict.items():
if metric_name in local_train_metric_dict:
local_train_metric_dict[metric_name] += metric_val / args.log_every
else:
local_train_metric_dict[metric_name] = metric_val / args.log_every
# train logs
num_examples += batch.context.size(0)
len_contexts += batch.context.size(1)
len_answers += batch.answer.size(1)
if log_every is not None and (iteration % log_every == 0 % log_every):
local_loss /= args.log_every
num_examples /= args.log_every
len_contexts /= args.log_every
len_answers /= args.log_every
avg_batch_size = f'avbatch_{num_examples:.0f}_{len_contexts:.0f}_{len_answers:.0f}:'
metric_entry = ''
for metric_key, metric_value in local_train_metric_dict.items():
metric_entry += f'{metric_key}_{metric_value:.2f}:'
metric_entry = f'{metric_entry[:-1]}'
logger.info(f'{args.timestamp}:{elapsed_time(logger)}:iteration_{iteration}:{round_progress}train_{task.name}:{task_progress}{avg_batch_size}loss_{local_loss:.4f}{metric_entry}')
num_examples = 0
len_contexts = 0
len_answers = 0
if writer is not None:
writer.add_scalar(f'loss/{task.name}/train', local_loss, iteration)
writer.add_scalar(f'training/lr', lr, iteration)
if grad_norm is not None:
writer.add_scalar(f'training/norm', grad_norm, iteration)
for metric_key, metric_value in local_train_metric_dict.items():
writer.add_scalar(f'{metric_key}/{task.name}/train', metric_value, iteration)
writer.add_scalar(f'{task.name}/{metric_key}/train', metric_value, iteration)
local_loss = 0
local_train_metric_dict = {}
num_examples = 0
# book keeping
task_iteration[task] += 1
iteration += 1
# book keeping
epoch += 1
rnd += 1
if all(task_done.values()):
logger.info(f'training is done after {epoch} epochs')
break
def init_opt(args, model):
opt = None
if 'adam' in args.optimizer.lower():
if args.transformer_lr:
opt = torch.optim.Adam(model.params, lr=args.lr_rate, betas=(0.9, 0.98), eps=1e-9, weight_decay=args.weight_decay)
else:
opt = torch.optim.Adam(model.params, lr=args.lr_rate, betas=(args.beta0, 0.999), weight_decay=args.weight_decay)
else:
opt = torch.optim.SGD(model.params, lr=args.sgd_lr, weight_decay=args.weight_decay,)
return opt
def run(args, run_args, rank=0, world_size=1):
device = set_seed(args, rank=rank)
logger = initialize_logger(args, rank)
field, train_sets, val_sets, aux_sets, save_dict = run_args
logger.start = time.time()
if hasattr(args, 'tensorboard') and args.tensorboard:
logger.info(f'Initializing Writer')
writer = SummaryWriter(log_dir=args.log_dir)
else:
writer = None
model = init_model(args, field, logger, world_size, device)
opt = init_opt(args, model)
start_iteration = 1
if save_dict is not None:
logger.info(f'Loading model from {os.path.join(args.save, args.load)}')
save_dict = torch.load(os.path.join(args.save, args.load))
model.load_state_dict(save_dict['model_state_dict'])
if args.resume:
logger.info(f'Resuming Training from {os.path.splitext(args.load)[0]}_optim.pth')
opt_state_dict = torch.load(os.path.join(args.save, f'{os.path.splitext(args.load)[0]}_optim.pth'))
start_iteration = opt_state_dict.pop('start_iteration')
logger.info(f'Starting iteration is {start_iteration}')
opt.load_state_dict(opt_state_dict)
train(args, model, opt, train_sets, args.train_iterations, field, val_sets=val_sets, aux_sets=aux_sets,
rank=rank, world_size=world_size,
log_every=args.log_every, val_every=args.val_every, rounds=len(train_sets)>1,
writer=writer if rank==0 else None, save_every=args.save_every, start_iteration=start_iteration,
best_decascore=save_dict.get('best_decascore') if save_dict is not None else None)
def main(argv=sys.argv):
args = arguments.parse(argv)
if args is None:
return
set_seed(args)
logger = initialize_logger(args)
logger.info(f'Arguments:\n{pformat(vars(args))}')
field, save_dict = None, None
if args.load is not None:
logger.info(f'Loading field from {os.path.join(args.save, args.load)}')
save_dict = torch.load(os.path.join(args.save, args.load))
field = save_dict['field']
field, train_sets, val_sets, aux_sets = prepare_data(args, field, logger)
if (args.use_curriculum and aux_sets is None) or (not args.use_curriculum and len(aux_sets)):
logging.error('sth unpleasant is happening with curriculum')
run_args = (field, train_sets, val_sets, aux_sets, save_dict)
if len(args.devices) > 1:
logger.info(f'Multiprocessing')
mp = Multiprocess(run, args)
mp.run(run_args)
else:
logger.info(f'Processing')
run(args, run_args, world_size=args.world_size)
if __name__ == '__main__':
main()