from __future__ import division import time import math import random from contextlib import contextmanager from copy import deepcopy import torch if torch.distributed.is_available(): from torch.distributed import get_world_size, get_rank from .batch import Batch from .dataset import Dataset class RandomShuffler(object): """Use random functions while keeping track of the random state to make it reproducible and deterministic.""" def __init__(self, random_state=None): self._random_state = random_state self.extra = 0 if self._random_state is None: self._random_state = random.getstate() @contextmanager def use_internal_state(self): """Use a specific RNG state.""" old_state = random.getstate() random.setstate(self._random_state) yield self._random_state = random.getstate() random.setstate(old_state) @property def random_state(self): return deepcopy(self._random_state) @random_state.setter def random_state(self, s): self._random_state = s def __call__(self, data, subsample=None): """Shuffle and return a new list.""" with self.use_internal_state(): return random.sample(data, len(data)) def set_epoch(self, epoch): self.epoch = epoch class DistributedShuffler: def __init__(self, num_replicas=None, rank=None): if num_replicas is None: num_replicas = get_world_size() if rank is None: rank = get_rank() self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.extra = 0 def __call__(self, data, subsample=True): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = list(torch.randperm(len(data), generator=g)) if not subsample: return [data[i] for i in indices] return [data[i] for i in self.subsample(indices)] def subsample(self, indices): # add extra samples to make it evenly divisible num_samples = int(math.ceil(len(indices) * 1.0 / self.num_replicas)) total_size = num_samples * self.num_replicas extras = indices[:(total_size - len(indices))] self.extra = len(extras) indices += extras assert len(indices) == total_size # subsample offset = num_samples * self.rank indices = indices[offset:offset + num_samples] assert len(indices) == num_samples return indices def set_epoch(self, epoch): self.epoch = epoch class Iterator(object): """Defines an iterator that loads batches of data from a Dataset. Attributes: dataset: The Dataset object to load Examples from. batch_size: Batch size. batch_size_fn: Function of three arguments (new example to add, current count of examples in the batch, and current effective batch size) that returns the new effective batch size resulting from adding that example to a batch. This is useful for dynamic batching, where this function would add to the current effective batch size the number of tokens in the new example. sort_key: A key to use for sorting examples in order to batch together examples with similar lengths and minimize padding. The sort_key provided to the Iterator constructor overrides the sort_key attribute of the Dataset, or defers to it if None. train: Whether the iterator represents a train set. repeat: Whether to repeat the iterator for multiple epochs. shuffle: Whether to shuffle examples between epochs. sort: Whether to sort examples according to self.sort_key. Note that repeat, shuffle, and sort default to train, train, and (not train). sort_within_batch: Whether to sort (in descending order according to self.sort_key) within each batch. If None, defaults to self.sort. If self.sort is True and this is False, the batch is left in the original (ascending) sorted order. device: Device to create batches on. Use -1 for CPU and None for the currently active GPU device. """ def __init__(self, dataset, batch_size, sort_key=None, device=None, batch_size_fn=None, train=True, repeat=None, shuffle=None, sort=None, reverse=False, sort_within_batch=None, distributed=False, num_replicas=None, rank=None): self.batch_size, self.train, self.dataset = batch_size, train, dataset self.batch_size_fn = batch_size_fn self.iterations = 0 self.epoch = 0 self.reverse = reverse self.repeat = train if repeat is None else repeat self.shuffle = train if shuffle is None else shuffle self.sort = not train if sort is None else sort if sort_within_batch is None: self.sort_within_batch = self.sort else: self.sort_within_batch = sort_within_batch if sort_key is None: self.sort_key = dataset.sort_key else: self.sort_key = sort_key self.device = device self.distributed = distributed if distributed: self.random_shuffler = DistributedShuffler(num_replicas=num_replicas, rank=rank) else: self.random_shuffler = RandomShuffler() # For state loading/saving only self._iterations_this_epoch = 0 self._random_state_this_epoch = None self._restored_from_state = False @classmethod def splits(cls, datasets, batch_sizes=None, **kwargs): """Create Iterator objects for multiple splits of a dataset. Arguments: datasets: Tuple of Dataset objects corresponding to the splits. The first such object should be the train set. batch_sizes: Tuple of batch sizes to use for the different splits, or None to use the same batch_size for all splits. Remaining keyword arguments: Passed to the constructor of the iterator class being used. """ if batch_sizes is None: batch_sizes = [kwargs.pop('batch_size')] * len(datasets) ret = [] for i in range(len(datasets)): train = i == 0 ret.append(cls( datasets[i], batch_size=batch_sizes[i], train=train, **kwargs)) return tuple(ret) def data(self): """Return the examples in the dataset in order, sorted, or shuffled.""" if self.sort: xs = sorted(self.dataset, key=self.sort_key, reverse=self.reverse) if self.distributed: xs = [xs[i] for i in self.random_shuffler.subsample(list(range(len(xs))))] elif self.shuffle: xs = self.random_shuffler(list(self.dataset)) else: xs = self.dataset self.extra = self.random_shuffler.extra return xs def init_epoch(self): """Set up the batch generator for a new epoch.""" if not self.distributed: if self._restored_from_state: self.random_shuffler.random_state = self._random_state_this_epoch else: self._random_state_this_epoch = self.random_shuffler.random_state self.create_batches() if not self.distributed: if self._restored_from_state: self._restored_from_state = False else: self._iterations_this_epoch = 0 else: self._iterations_this_epoch = 0 if not self.repeat: self.iterations = 0 self.epoch += 1 if self.distributed: self.random_shuffler.set_epoch(self.epoch) def create_batches(self): self.batches = batch(self.data(), self.batch_size, self.batch_size_fn) def __len__(self): if self.batch_size_fn is not None: raise NotImplementedError return math.ceil(len(self.dataset) / self.batch_size) def __iter__(self): while True: self.init_epoch() for idx, minibatch in enumerate(self.batches): # fast-forward if loaded from state if self._iterations_this_epoch > idx: continue self.iterations += 1 self._iterations_this_epoch += 1 if self.sort_within_batch: # NOTE: `rnn.pack_padded_sequence` requires that a minibatch # be sorted by decreasing order, which requires reversing # relative to typical sort keys if self.sort: minibatch.reverse() else: minibatch.sort(key=self.sort_key, reverse=self.reverse) b = Batch(minibatch, self.dataset, self.device, self.train) yield b if not self.repeat: return def state_dict(self): d = {"iterations": self.iterations} if not self.distributed: d.update({ "iterations_this_epoch": self._iterations_this_epoch, "random_state_this_epoch": self._random_state_this_epoch }) def load_state_dict(self, state_dict): self.iterations = state_dict["iterations"] self._iterations_this_epoch = state_dict["iterations_this_epoch"] if not self.distributed: self._random_state_this_epoch = state_dict["random_state_this_epoch"] self._restored_from_state = True class BPTTIterator(Iterator): """Defines an iterator for language modeling tasks that use BPTT. Provides contiguous streams of examples together with targets that are one timestep further forward, for language modeling training with backpropagation through time (BPTT). Expects a Dataset with a single example and a single field called 'text' and produces Batches with text and target attributes. Attributes: dataset: The Dataset object to load Examples from. batch_size: Batch size. bptt_len: Length of sequences for backpropagation through time. sort_key: A key to use for sorting examples in order to batch together examples with similar lengths and minimize padding. The sort_key provided to the Iterator constructor overrides the sort_key attribute of the Dataset, or defers to it if None. train: Whether the iterator represents a train set. repeat: Whether to repeat the iterator for multiple epochs. shuffle: Whether to shuffle examples between epochs. sort: Whether to sort examples according to self.sort_key. Note that repeat, shuffle, and sort default to train, train, and (not train). device: Device to create batches on. Use -1 for CPU and None for the currently active GPU device. """ def __init__(self, dataset, batch_size, bptt_len, **kwargs): self.bptt_len = bptt_len super(BPTTIterator, self).__init__(dataset, batch_size, **kwargs) def __len__(self): return math.ceil((len(self.dataset[0].text) / self.batch_size - 1) / self.bptt_len) def __iter__(self): text = self.dataset[0].text TEXT = self.dataset.fields['text'] TEXT.eos_token = None text = text + ([TEXT.pad_token] * int(math.ceil(len(text) / self.batch_size) * self.batch_size - len(text))) data = TEXT.numericalize( [text], device=self.device, train=self.train) data = data.view(self.batch_size, -1).t().contiguous() dataset = Dataset(examples=self.dataset.examples, fields=[ ('text', TEXT), ('target', TEXT)]) while True: for i in range(0, len(self) * self.bptt_len, self.bptt_len): seq_len = min(self.bptt_len, len(data) - i - 1) yield Batch.fromvars( dataset, self.batch_size, train=self.train, text=data[i:i + seq_len], target=data[i + 1:i + 1 + seq_len]) if not self.repeat: raise StopIteration class BucketIterator(Iterator): """Defines an iterator that batches examples of similar lengths together. Minimizes amount of padding needed while producing freshly shuffled batches for each new epoch. See pool for the bucketing procedure used. """ def create_batches(self): if self.sort: self.batches = batch(self.data(), self.batch_size, self.batch_size_fn, repeat=self.repeat) else: self.batches = pool(self.data(), self.batch_size, self.sort_key, self.batch_size_fn, random_shuffler=self.random_shuffler, repeat=self.repeat, reverse=self.reverse, shuffle=self.shuffle) def batch(data, batch_size, batch_size_fn=None, repeat=False): """Yield elements from data in chunks of batch_size.""" if batch_size_fn is None: def batch_size_fn(new, count, sofar): return count minibatch = [] size_so_far = 0 for ex in data: minibatch.append(ex) size_so_far = batch_size_fn(ex, len(minibatch), size_so_far) if size_so_far == batch_size: yield minibatch minibatch, size_so_far = [], 0 elif size_so_far > batch_size: if len(minibatch) == 1: # if we only have one really big example yield minibatch minibatch, size_so_far = [], 0 else: yield minibatch[:-1] minibatch, size_so_far = minibatch[-1:], batch_size_fn(ex, 1, 0) if size_so_far > batch_size: # if we add a really big example that needs to be on its own to a batch yield minibatch minibatch, size_so_far = [], 0 if minibatch: yield minibatch def pool(data, batch_size, key, batch_size_fn=lambda new, count, sofar: count, random_shuffler=None, reverse=False, shuffle=False, repeat=False, leftovers=None): """Sort within buckets, then batch, then shuffle batches. Partitions data into chunks of size 100*batch_size, sorts examples within each chunk using sort_key, then batch these examples and shuffle the batches. """ if random_shuffler is None: random_shuffler = random.shuffle for p in batch(data, batch_size * 100, batch_size_fn): p_batch = batch(sorted(p, key=key, reverse=reverse), batch_size, batch_size_fn, repeat=repeat) if shuffle: for b in random_shuffler(list(p_batch), subsample=False): yield b else: for b in list(p_batch): yield b