#!/usr/bin/env bash . ./tests/lib.sh i=0 # test almond_natural_seq2seq and almond_paraphrase tasks for model in \ "sshleifer/bart-tiny-random"; do # train genienlp train \ $SHARED_TRAIN_HPARAMS \ --train_tasks almond_natural_seq2seq \ --train_batch_tokens 100 \ --val_batch_size 100 \ --train_iterations 6 \ --save $workdir/model_$i \ --data $SRCDIR/dataset/ \ --model TransformerSeq2Seq \ --pretrained_model $model # greedy prediction genienlp predict \ --tasks almond_paraphrase \ --evaluate test \ --path $workdir/model_$i \ --overwrite \ --eval_dir $workdir/model_$i/eval_results/ \ --data $SRCDIR/dataset/ \ --embeddings $EMBEDDING_DIR \ --extra_metrics rouge1 rougeL # use a HuggingFace model directly in genienlp predict genienlp predict \ --tasks almond_paraphrase \ --evaluate test \ --path $model \ --overwrite \ --eval_dir $workdir/model_$i/hf_results/ \ --data $SRCDIR/dataset/ \ --embeddings $EMBEDDING_DIR \ --pred_languages en \ --model TransformerSeq2Seq \ --min_output_length 1 \ --max_output_length 150 \ --val_batch_size 100 \ --is_hf_model # check if result file exists if test ! -f $workdir/model_$i/eval_results/test/almond_paraphrase.tsv || test ! -f $workdir/model_$i/eval_results/test/almond_paraphrase.results.json || test ! -f $workdir/model_$i/hf_results/test/almond_paraphrase.tsv ; then echo "File not found!" exit 1 fi rm -rf $workdir/model_$i i=$((i+1)) done # paraphrasing tests cp -r $SRCDIR/dataset/paraphrasing/ $workdir/paraphrasing/ for model in "gpt2" "sshleifer/bart-tiny-random" ; do if [[ $model == *gpt2* ]] ; then model_type="gpt2" elif [[ $model == */bart* ]] ; then model_type="bart" fi # train a paraphrasing model for a few iterations genienlp train-paraphrase \ --sort_by_length \ --input_column 0 \ --gold_column 1 \ --train_data_file $workdir/paraphrasing/train.tsv \ --eval_data_file $workdir/paraphrasing/dev.tsv \ --output_dir $workdir/"$model_type" \ --tensorboard_dir $workdir/tensorboard/ \ --model_type $model_type \ --do_train \ --do_eval \ --evaluate_during_training \ --overwrite_output_dir \ --logging_steps 1000 \ --save_steps 1000 \ --max_steps 4 \ --save_total_limit 1 \ --gradient_accumulation_steps 2 \ --per_gpu_eval_batch_size 1 \ --per_gpu_train_batch_size 1 \ --num_train_epochs 1 \ --model_name_or_path $model \ --overwrite_cache # train a second paraphrasing model (testing num_input_chunks) genienlp train-paraphrase \ --sort_by_length \ --num_input_chunks 2 \ --input_column 0 \ --gold_column 1 \ --train_data_file $workdir/paraphrasing/train.tsv \ --eval_data_file $workdir/paraphrasing/dev.tsv \ --output_dir $workdir/"$model_type"_2/ \ --tensorboard_dir $workdir/tensorboard/ \ --model_type $model_type \ --do_train \ --do_eval \ --evaluate_during_training \ --overwrite_output_dir \ --logging_steps 1000 \ --save_steps 1000 \ --max_steps 4 \ --save_total_limit 1 \ --gradient_accumulation_steps 2 \ --per_gpu_eval_batch_size 1 \ --per_gpu_train_batch_size 1 \ --num_train_epochs 1 \ --model_name_or_path $model \ --overwrite_cache # use it to paraphrase almond's train set genienlp run-paraphrase \ --model_name_or_path $workdir/"$model_type" \ --length 15 \ --temperature 0.4 \ --repetition_penalty 1.0 \ --num_samples 4 \ --input_file $SRCDIR/dataset/almond/train.tsv \ --input_column 1 \ --output_file $workdir/generated_"$model_type".tsv \ --task paraphrase # check if result file exists if test ! -f $workdir/generated_"$model_type".tsv ; then echo "File not found!" exit 1 fi rm -rf $workdir/generated_"$model_type".tsv rm -rf $workdir/"$model_type" done # masked paraphrasing tests cp -r $SRCDIR/dataset/paraphrasing/ $workdir/masked_paraphrasing/ for model in "sshleifer/bart-tiny-random" "sshleifer/tiny-mbart" ; do if [[ $model == *mbart* ]] ; then model_type="mbart" elif [[ $model == *bart* ]] ; then model_type="bart" fi # use a pre-trained model genienlp run-paraphrase \ --model_name_or_path $model \ --length 15 \ --temperature 0 \ --repetition_penalty 1.0 \ --num_samples 1 \ --batch_size 3 \ --input_file $workdir/masked_paraphrasing/dev.tsv \ --input_column 0 \ --gold_column 1 \ --output_file $workdir/generated_"$model_type".tsv \ --skip_heuristics \ --task paraphrase \ --infill_text \ --num_text_spans 1 \ --src_lang en \ --tgt_lang en # create input file for sts filtering paste <(cut -f1-2 $workdir/masked_paraphrasing/dev.tsv) <(cut -f2 $workdir/generated_"$model_type".tsv) <(cut -f3 $workdir/masked_paraphrasing/dev.tsv) > $workdir/sts_input_"$model_type".tsv # calculate sts score for paraphrases genienlp sts-calculate-scores \ --input_file $workdir/sts_input_"$model_type".tsv \ --output_file $workdir/sts_output_score_"$model_type".tsv # filter paraphrases based on sts score genienlp sts-filter \ --input_file $workdir/sts_output_score_"$model_type".tsv \ --output_file $workdir/sts_output_"$model_type".tsv \ --filtering_metric constant \ --filtering_threshold 0.98 if test ! -f $workdir/generated_"$model_type".tsv || test ! -f $workdir/sts_output_"$model_type".tsv ; then echo "File not found!" exit 1 fi done rm -fr $workdir rm -rf $SRCDIR/torch-shm-fi