from torchtext import data from torchtext import datasets from torchtext.vocab import GloVe # Approach 1: # set up fields TEXT = data.Field(lower=True, include_lengths=True, batch_first=True) LABEL = data.Field(sequential=False) # make splits for data train, test = datasets.IMDB.splits(TEXT, LABEL) # print information about the data print('train.fields', train.fields) print('len(train)', len(train)) print('vars(train[0])', vars(train[0])) # build the vocabulary TEXT.build_vocab(train, vectors=GloVe(name='6B', dim=300)) LABEL.build_vocab(train) # print vocab information print('len(TEXT.vocab)', len(TEXT.vocab)) print('TEXT.vocab.vectors.size()', TEXT.vocab.vectors.size()) # make iterator for splits train_iter, test_iter = data.BucketIterator.splits( (train, test), batch_size=3, device=0) # print batch information batch = next(iter(train_iter)) print(batch.text) print(batch.label) # Approach 2: train_iter, test_iter = datasets.IMDB.iters(batch_size=4) # print batch information batch = next(iter(train_iter)) print(batch.text) print(batch.label)