#!/usr/bin/env bash . ./tests/lib.sh i=0 # test almond_multilingual task for hparams in \ "--model TransformerLSTM --pretrained_model bert-base-multilingual-cased --trainable_decoder_embeddings=50" \ "--model TransformerLSTM --pretrained_model bert-base-multilingual-cased --trainable_decoder_embeddings=50 --sentence_batching --use_encoder_loss" \ "--model TransformerLSTM --pretrained_model bert-base-multilingual-cased --trainable_decoder_embeddings=50 --rnn_zero_state cls --almond_lang_as_question" ; do # train pipenv run python3 -m genienlp train --train_tasks almond_multilingual --train_languages fa+en --eval_languages fa+en --train_batch_tokens 50 --val_batch_size 50 --train_iterations 4 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $EMBEDDING_DIR --no_commit # greedy decode # combined evaluation pipenv run python3 -m genienlp predict --tasks almond_multilingual --pred_languages fa+en --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $EMBEDDING_DIR --skip_cache # separate evaluation pipenv run python3 -m genienlp predict --tasks almond_multilingual --separate_eval --pred_languages fa+en --evaluate test --path $workdir/model_$i --overwrite --eval_dir $workdir/model_$i/eval_results/ --data $SRCDIR/dataset/ --embeddings $EMBEDDING_DIR --skip_cache # check if result file exists if test ! -f $workdir/model_$i/eval_results/test/almond_multilingual_en.tsv || test ! -f $workdir/model_$i/eval_results/test/almond_multilingual_fa.tsv || test ! -f $workdir/model_$i/eval_results/test/almond_multilingual_fa+en.tsv; then echo "File not found!" exit 1 fi rm -rf $workdir/model_$i i=$((i+1)) done