# # Copyright (c) 2018, Salesforce, Inc. # The Board of Trustees of the Leland Stanford Junior University # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from argparse import ArgumentParser import ujson as json import torch import numpy as np import random import asyncio import logging import sys from copy import deepcopy from pprint import pformat from .util import set_seed, load_config_json from . import models from .text.torchtext.data import Example from .utils.embeddings import load_embeddings from .tasks.registry import get_tasks from .tasks.generic_dataset import CONTEXT_SPECIAL, QUESTION_SPECIAL, get_context_question, CQA logger = logging.getLogger(__name__) class ProcessedExample(): pass class Server(): def __init__(self, args, field, model): self.device = set_seed(args) self.args = args self.field = field self.model = model logger.info(f'Vocabulary has {len(self.field.vocab)} tokens from training') self._vector_collections = load_embeddings(args) self._limited_idx_to_full_idx = deepcopy(self.field.decoder_to_vocab) # should avoid this with a conditional in map to full self._oov_to_limited_idx = {} self._cached_tasks = dict() assert self.field.include_lengths def numericalize_example(self, ex): processed = ProcessedExample() new_vectors = [] for name in CQA.fields: value = getattr(ex, name) assert isinstance(value, list) # check if all the words are in the vocabulary, and if not # grow the vocabulary and the embedding matrix for word in value: if word not in self.field.vocab.stoi: self.field.vocab.stoi[word] = len(self.field.vocab.itos) self.field.vocab.itos.append(word) new_vector = [vec[word] for vec in self._vector_collections] # charNgram returns a [1, D] tensor, while Glove returns a [D] tensor # normalize to [1, D] so we can concat along the second dimension # and later concat all vectors along the first new_vector = [vec if vec.dim() > 1 else vec.unsqueeze(0) for vec in new_vector] new_vectors.append(torch.cat(new_vector, dim=1)) # batch of size 1 batch = [value] entry, lengths, limited_entry, raw = self.field.process(batch, device=self.device, train=True, limited=self.field.decoder_stoi, l2f=self._limited_idx_to_full_idx, oov2l=self._oov_to_limited_idx) setattr(processed, name, entry) setattr(processed, f'{name}_lengths', lengths) setattr(processed, f'{name}_limited', limited_entry) setattr(processed, f'{name}_tokens', [[s.strip() for s in l] for l in raw]) processed.oov_to_limited_idx = self._oov_to_limited_idx processed.limited_idx_to_full_idx = self._limited_idx_to_full_idx if new_vectors: # concat the old embedding matrix and all the new vector along the first dimension new_embedding_matrix = torch.cat([self.field.vocab.vectors] + new_vectors, dim=0) self.field.vocab.vectors = new_embedding_matrix self.model.set_embeddings(new_embedding_matrix) return processed def handle_request(self, line): request = json.loads(line) task_name = request['task'] if 'task' in request else 'generic' if task_name in self._cached_tasks: task = self._cached_tasks[task_name] else: task = get_tasks([task_name], self.args)[0] self._cached_tasks[task_name] = task context = request['context'] if not context: context = task.default_context question = request['question'] if not question: question = task.default_question answer = '' tokenize = task.tokenize context_question = get_context_question(context, question) fields = [(x, self.field) for x in CQA.fields] ex = Example.fromlist([context, question, answer, CONTEXT_SPECIAL, QUESTION_SPECIAL, context_question], fields, tokenize=tokenize) batch = self.numericalize_example(ex) _, prediction_batch = self.model(batch, iteration=0) predictions = self.field.reverse(prediction_batch, detokenize=task.detokenize, field_name='answer') response = json.dumps(dict(id=request['id'], answer=predictions[0])) return response + '\n' async def handle_client(self, client_reader, client_writer): try: line = await client_reader.readline() while line: client_writer.write(self.handle_request(line).encode('utf-8')) line = await client_reader.readline() except IOError: logger.info('Connection to client_reader closed') try: client_writer.close() except IOError: pass def _run_tcp(self): loop = asyncio.get_event_loop() server = loop.run_until_complete(asyncio.start_server(self.handle_client, port=self.args.port)) try: loop.run_forever() except KeyboardInterrupt: pass server.close() loop.run_until_complete(server.wait_closed()) loop.close() def _run_stdin(self): try: while True: line = sys.stdin.readline() if not line: break sys.stdout.write(self.handle_request(line)) sys.stdout.flush() except KeyboardInterrupt: pass def run(self): def mult(ps): r = 0 for p in ps: this_r = 1 for s in p.size(): this_r *= s r += this_r return r params = list(filter(lambda p: p.requires_grad, self.model.parameters())) num_param = mult(params) logger.info(f'{self.args.model} has {num_param:,} parameters') self.model.to(self.device) self.model.eval() with torch.no_grad(): if self.args.stdin: self._run_stdin() else: self._run_tcp() def get_args(argv): parser = ArgumentParser(prog=argv[0]) parser.add_argument('--path', required=True) parser.add_argument('--devices', default=[0], nargs='+', type=int, help='a list of devices that can be used (multi-gpu currently WIP)') parser.add_argument('--seed', default=123, type=int, help='Random seed.') parser.add_argument('--embeddings', default='./decaNLP/.embeddings', type=str, help='where to save embeddings.') parser.add_argument('--thingpedia', type=str, help='where to load thingpedia.json from (for almond task only)') parser.add_argument('--checkpoint_name', default='best.pth', help='Checkpoint file to use (relative to --path, defaults to best.pth)') parser.add_argument('--port', default=8401, type=int, help='TCP port to listen on') parser.add_argument('--stdin', action='store_true', help='Interact on stdin/stdout instead of TCP') args = parser.parse_args(argv[1:]) load_config_json(args) return args def main(argv=sys.argv): args = get_args(argv) logger.info(f'Arguments:\n{pformat(vars(args))}') np.random.seed(args.seed) random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) logger.info(f'Loading from {args.best_checkpoint}') if torch.cuda.is_available(): save_dict = torch.load(args.best_checkpoint) else: save_dict = torch.load(args.best_checkpoint, map_location='cpu') field = save_dict['field'] logger.info(f'Initializing Model') Model = getattr(models, args.model) model = Model(field, args) model_dict = save_dict['model_state_dict'] backwards_compatible_cove_dict = {} for k, v in model_dict.items(): if 'cove.rnn.' in k: k = k.replace('cove.rnn.', 'cove.rnn1.') backwards_compatible_cove_dict[k] = v model_dict = backwards_compatible_cove_dict model.load_state_dict(model_dict) server = Server(args, field, model) model.set_embeddings(field.vocab.vectors) server.run()