Remove old, unused ablation models

These are the models that were used to ablate MQAN. They are worse
than MQAN, and by removing them we can facilitate refactorings.
This commit is contained in:
Giovanni Campagna 2019-12-10 16:40:38 -08:00
parent 4cf9a1941f
commit d927b33458
4 changed files with 1 additions and 743 deletions

View File

@ -28,7 +28,4 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from .multitask_question_answering_network import MultitaskQuestionAnsweringNetwork
from .multi_lingual_translation_model import MultiLingualTranslationModel
from .coattentive_pointer_generator import CoattentivePointerGenerator
from .self_attentive_pointer_generator import SelfAttentivePointerGenerator
from .pointer_generator import PointerGenerator
from .multi_lingual_translation_model import MultiLingualTranslationModel

View File

@ -1,261 +0,0 @@
#
# Copyright (c) 2018, Salesforce, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from .common import positional_encodings_like, INF, EPSILON, TransformerEncoder, TransformerDecoder, PackedLSTM, LSTMDecoderAttention, LSTMDecoder, Embedding, Feedforward, mask, CoattentiveLayer
class CoattentivePointerGenerator(nn.Module):
def __init__(self, field, args):
super().__init__()
self.field = field
self.args = args
self.pad_idx = self.field.vocab.stoi[self.field.pad_token]
self.encoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio)
self.decoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio)
self.bilstm_before_coattention = PackedLSTM(args.dimension, args.dimension,
batch_first=True, dropout=args.dropout_ratio, bidirectional=True, num_layers=1)
self.coattention = CoattentiveLayer(args.dimension, dropout=0.3)
dim = 2*args.dimension + args.dimension + args.dimension
self.context_bilstm_after_coattention = PackedLSTM(dim, args.dimension,
batch_first=True, dropout=args.dropout_ratio, bidirectional=True,
num_layers=args.rnn_layers)
self.self_attentive_encoder_context = TransformerEncoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
self.bilstm_context = PackedLSTM(args.dimension, args.dimension,
batch_first=True, dropout=args.dropout_ratio, bidirectional=True,
num_layers=args.rnn_layers)
self.self_attentive_decoder = TransformerDecoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
self.dual_ptr_rnn_decoder = DualPtrRNNDecoder(args.dimension, args.dimension,
dropout=args.dropout_ratio, num_layers=args.rnn_layers)
self.generative_vocab_size = min(len(field.vocab), args.max_generative_vocab)
self.out = nn.Linear(args.dimension, self.generative_vocab_size)
self.dropout = nn.Dropout(0.4)
def set_embeddings(self, embeddings):
self.encoder_embeddings.set_embeddings(embeddings)
self.decoder_embeddings.set_embeddings(embeddings)
def forward(self, batch):
context, context_lengths, context_limited = batch.context, batch.context_lengths, batch.context_limited
question, question_lengths, question_limited = batch.question, batch.question_lengths, batch.question_limited
answer, answer_lengths, answer_limited = batch.answer, batch.answer_lengths, batch.answer_limited
oov_to_limited_idx, limited_idx_to_full_idx = batch.oov_to_limited_idx, batch.limited_idx_to_full_idx
def map_to_full(x):
return limited_idx_to_full_idx[x]
self.map_to_full = map_to_full
context_embedded = self.encoder_embeddings(context)
question_embedded = self.encoder_embeddings(question)
context_encoded = self.bilstm_before_coattention(context_embedded, context_lengths)[0]
question_encoded = self.bilstm_before_coattention(question_embedded, question_lengths)[0]
context_padding = context.data == self.pad_idx
question_padding = question.data == self.pad_idx
coattended_context = self.coattention(context_encoded, question_encoded, context_padding, question_padding)
context_summary = torch.cat([coattended_context, context_encoded, context_embedded], -1)
condensed_context, _ = self.context_bilstm_after_coattention(context_summary, context_lengths)
self_attended_context = self.self_attentive_encoder_context(condensed_context, padding=context_padding)
final_context, (context_rnn_h, context_rnn_c) = self.bilstm_context(self_attended_context[-1], context_lengths)
context_rnn_state = [self.reshape_rnn_state(x) for x in (context_rnn_h, context_rnn_c)]
context_indices = context_limited if context_limited is not None else context
answer_indices = answer_limited if answer_limited is not None else answer
pad_idx = self.field.decoder_stoi[self.field.pad_token]
context_padding = context_indices.data == pad_idx
self.dual_ptr_rnn_decoder.applyMasks(context_padding)
if self.training:
answer_padding = answer_indices.data == pad_idx
answer_embedded = self.decoder_embeddings(answer)
self_attended_decoded = self.self_attentive_decoder(answer_embedded[:, :-1].contiguous(), self_attended_context, context_padding=context_padding, answer_padding=answer_padding[:, :-1], positional_encodings=True)
decoder_outputs = self.dual_ptr_rnn_decoder(self_attended_decoded,
final_context, hidden=context_rnn_state)
rnn_output, context_attention, context_alignment, vocab_pointer_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch,
context_attention,
context_indices,
oov_to_limited_idx)
probs, targets = mask(answer_indices[:, 1:].contiguous(), probs.contiguous(), pad_idx=pad_idx)
loss = F.nll_loss(probs.log(), targets)
return loss, None
else:
return None, self.greedy(self_attended_context, final_context,
context_indices,
oov_to_limited_idx, rnn_state=context_rnn_state).data
def reshape_rnn_state(self, h):
return h.view(h.size(0) // 2, 2, h.size(1), h.size(2)) \
.transpose(1, 2).contiguous() \
.view(h.size(0) // 2, h.size(1), h.size(2) * 2).contiguous()
def probs(self, generator, outputs, vocab_pointer_switches,
context_attention,
context_indices,
oov_to_limited_idx):
size = list(outputs.size())
size[-1] = self.generative_vocab_size
scores = generator(outputs.view(-1, outputs.size(-1))).view(size)
p_vocab = F.softmax(scores, dim=scores.dim()-1)
scaled_p_vocab = vocab_pointer_switches.expand_as(p_vocab) * p_vocab
effective_vocab_size = self.generative_vocab_size + len(oov_to_limited_idx)
if self.generative_vocab_size < effective_vocab_size:
size[-1] = effective_vocab_size - self.generative_vocab_size
buff = scaled_p_vocab.new_full(size, EPSILON)
scaled_p_vocab = torch.cat([scaled_p_vocab, buff], dim=buff.dim()-1)
p_context_ptr = scaled_p_vocab.new_full(scaled_p_vocab.size(), EPSILON)
p_context_ptr.scatter_add_(p_context_ptr.dim()-1, context_indices.unsqueeze(1).expand_as(context_attention), context_attention)
scaled_p_context_ptr = (1 - vocab_pointer_switches).expand_as(p_context_ptr) * p_context_ptr
probs = scaled_p_vocab + scaled_p_context_ptr
return probs
def greedy(self, self_attended_context, context, context_indices, oov_to_limited_idx, rnn_state=None):
B, TC, C = context.size()
T = self.args.max_output_length
outs = context.new_full((B, T), self.field.decoder_stoi['<pad>'], dtype=torch.long)
hiddens = [self_attended_context[0].new_zeros((B, T, C))
for l in range(len(self.self_attentive_decoder.layers) + 1)]
hiddens[0] = hiddens[0] + positional_encodings_like(hiddens[0])
eos_yet = context.data.new(B).byte().zero_()
rnn_output, context_alignment = None, None
for t in range(T):
if t == 0:
embedding = self.decoder_embeddings(
self_attended_context[-1].new_full((B, 1), self.field.vocab.stoi['<init>'], dtype=torch.long), [1]*B)
else:
embedding = self.decoder_embeddings(outs[:, t - 1].unsqueeze(1), [1]*B)
hiddens[0][:, t] = hiddens[0][:, t] + (math.sqrt(self.self_attentive_decoder.d_model) * embedding).squeeze(1)
for l in range(len(self.self_attentive_decoder.layers)):
hiddens[l + 1][:, t] = self.self_attentive_decoder.layers[l].feedforward(
self.self_attentive_decoder.layers[l].attention(
self.self_attentive_decoder.layers[l].selfattn(hiddens[l][:, t], hiddens[l][:, :t + 1], hiddens[l][:, :t + 1])
, self_attended_context[l], self_attended_context[l]))
decoder_outputs = self.dual_ptr_rnn_decoder(hiddens[-1][:, t].unsqueeze(1),
context,
context_alignment=context_alignment,
hidden=rnn_state, output=rnn_output)
rnn_output, context_attention, context_alignment, vocab_pointer_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch,
context_attention,
context_indices,
oov_to_limited_idx)
pred_probs, preds = probs.max(-1)
preds = preds.squeeze(1)
eos_yet = eos_yet | (preds == self.field.decoder_stoi['<eos>'])
outs[:, t] = preds.cpu().apply_(self.map_to_full)
if eos_yet.all():
break
return outs
class DualPtrRNNDecoder(nn.Module):
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1):
super().__init__()
self.d_hid = d_hid
self.d_in = d_in
self.num_layers = num_layers
self.dropout = nn.Dropout(dropout)
self.input_feed = True
if self.input_feed:
d_in += 1 * d_hid
self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout)
self.context_attn = LSTMDecoderAttention(d_hid, dot=True)
self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
def forward(self, input, context, output=None, hidden=None, context_alignment=None):
context_output = output.squeeze(1) if output is not None else self.make_init_output(context)
context_alignment = context_alignment if context_alignment is not None else self.make_init_output(context)
context_outputs, vocab_pointer_switches, context_attentions, context_alignments = [], [], [], []
for emb_t in input.split(1, dim=1):
emb_t = emb_t.squeeze(1)
context_output = self.dropout(context_output)
if self.input_feed:
emb_t = torch.cat([emb_t, context_output], 1)
dec_state, hidden = self.rnn(emb_t, hidden)
context_output, context_attention, context_alignment = self.context_attn(dec_state, context)
vocab_pointer_switch = self.vocab_pointer_switch(torch.cat([dec_state, context_output, emb_t], -1))
context_output = self.dropout(context_output)
context_outputs.append(context_output)
vocab_pointer_switches.append(vocab_pointer_switch)
context_attentions.append(context_attention)
context_alignments.append(context_alignment)
context_outputs, vocab_pointer_switches, context_attention = [self.package_outputs(x) for x in [context_outputs, vocab_pointer_switches, context_attentions]]
return context_outputs, context_attention, context_alignment, vocab_pointer_switches, hidden
def applyMasks(self, context_mask):
self.context_attn.applyMasks(context_mask)
def make_init_output(self, context):
batch_size = context.size(0)
h_size = (batch_size, self.d_hid)
return context.new_zeros(h_size)
def package_outputs(self, outputs):
outputs = torch.stack(outputs, dim=1)
return outputs

View File

@ -1,225 +0,0 @@
#
# Copyright (c) 2018, Salesforce, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from .common import positional_encodings_like, INF, EPSILON, TransformerEncoder, TransformerDecoder, PackedLSTM, LSTMDecoderAttention, LSTMDecoder, Embedding, Feedforward, mask
class PointerGenerator(nn.Module):
def __init__(self, field, args):
super().__init__()
self.field = field
self.args = args
self.pad_idx = self.field.vocab.stoi[self.field.pad_token]
self.encoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio)
self.decoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio)
self.bilstm_before_coattention = PackedLSTM(args.dimension, args.dimension,
batch_first=True, dropout=args.dropout_ratio, bidirectional=True, num_layers=args.rnn_layers)
self.dual_ptr_rnn_decoder = DualPtrRNNDecoder(args.dimension, args.dimension,
dropout=args.dropout_ratio, num_layers=args.rnn_layers)
self.generative_vocab_size = min(len(field.vocab), args.max_generative_vocab)
self.out = nn.Linear(args.dimension, self.generative_vocab_size)
self.dropout = nn.Dropout(0.4)
def set_embeddings(self, embeddings):
self.encoder_embeddings.set_embeddings(embeddings)
self.decoder_embeddings.set_embeddings(embeddings)
def forward(self, batch):
context, context_lengths, context_limited = batch.context_question, batch.context_question_lengths, batch.context_question_limited
answer, answer_lengths, answer_limited = batch.answer, batch.answer_lengths, batch.answer_limited
oov_to_limited_idx, limited_idx_to_full_idx = batch.oov_to_limited_idx, batch.limited_idx_to_full_idx
def map_to_full(x):
return limited_idx_to_full_idx[x]
self.map_to_full = map_to_full
context_embedded = self.encoder_embeddings(context)
context_encoded, (context_rnn_h, context_rnn_c) = self.bilstm_before_coattention(context_embedded, context_lengths)
context_rnn_state = [self.reshape_rnn_state(x) for x in (context_rnn_h, context_rnn_c)]
context_padding = context.data == self.pad_idx
context_indices = context_limited if context_limited is not None else context
answer_indices = answer_limited if answer_limited is not None else answer
pad_idx = self.field.decoder_stoi[self.field.pad_token]
context_padding = context_indices.data == pad_idx
self.dual_ptr_rnn_decoder.applyMasks(context_padding)
if self.training:
answer_embedded = self.decoder_embeddings(answer)
decoder_outputs = self.dual_ptr_rnn_decoder(answer_embedded[:, :-1].contiguous(),
context_encoded, hidden=context_rnn_state)
rnn_output, context_attention, context_alignment, vocab_pointer_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch,
context_attention,
context_indices,
oov_to_limited_idx)
probs, targets = mask(answer_indices[:, 1:].contiguous(), probs.contiguous(), pad_idx=pad_idx)
loss = F.nll_loss(probs.log(), targets)
return loss, None
else:
return None, self.greedy(context_encoded,
context_indices,
oov_to_limited_idx, rnn_state=context_rnn_state).data
def reshape_rnn_state(self, h):
return h.view(h.size(0) // 2, 2, h.size(1), h.size(2)) \
.transpose(1, 2).contiguous() \
.view(h.size(0) // 2, h.size(1), h.size(2) * 2).contiguous()
def probs(self, generator, outputs, vocab_pointer_switches,
context_attention,
context_indices,
oov_to_limited_idx):
size = list(outputs.size())
size[-1] = self.generative_vocab_size
scores = generator(outputs.view(-1, outputs.size(-1))).view(size)
p_vocab = F.softmax(scores, dim=scores.dim()-1)
scaled_p_vocab = vocab_pointer_switches.expand_as(p_vocab) * p_vocab
effective_vocab_size = self.generative_vocab_size + len(oov_to_limited_idx)
if self.generative_vocab_size < effective_vocab_size:
size[-1] = effective_vocab_size - self.generative_vocab_size
buff = scaled_p_vocab.new_full(size, EPSILON)
scaled_p_vocab = torch.cat([scaled_p_vocab, buff], dim=buff.dim()-1)
p_context_ptr = scaled_p_vocab.new_full(scaled_p_vocab.size(), EPSILON)
p_context_ptr.scatter_add_(p_context_ptr.dim()-1, context_indices.unsqueeze(1).expand_as(context_attention), context_attention)
scaled_p_context_ptr = (1 - vocab_pointer_switches).expand_as(p_context_ptr) * p_context_ptr
probs = scaled_p_vocab + scaled_p_context_ptr
return probs
def greedy(self, context, context_indices, oov_to_limited_idx, rnn_state=None):
B, TC, C = context.size()
T = self.args.max_output_length
outs = context.new_full((B, T), self.field.decoder_stoi['<pad>'], dtype=torch.long)
eos_yet = context.data.new(B).byte().zero_()
rnn_output, context_alignment = None, None
for t in range(T):
if t == 0:
embedding = self.decoder_embeddings(
context[-1].new_full((B, 1), self.field.vocab.stoi['<init>'], dtype=torch.long), [1]*B)
else:
embedding = self.decoder_embeddings(outs[:, t - 1].unsqueeze(1), [1]*B)
decoder_outputs = self.dual_ptr_rnn_decoder(embedding, #hiddens[-1][:, t].unsqueeze(1),
context,
context_alignment=context_alignment,
hidden=rnn_state, output=rnn_output)
rnn_output, context_attention, context_alignment, vocab_pointer_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch,
context_attention,
context_indices,
oov_to_limited_idx)
pred_probs, preds = probs.max(-1)
preds = preds.squeeze(1)
eos_yet = eos_yet | (preds == self.field.decoder_stoi['<eos>'])
outs[:, t] = preds.cpu().apply_(self.map_to_full)
if eos_yet.all():
break
return outs
class DualPtrRNNDecoder(nn.Module):
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1):
super().__init__()
self.d_hid = d_hid
self.d_in = d_in
self.num_layers = num_layers
self.dropout = nn.Dropout(dropout)
self.input_feed = True
if self.input_feed:
d_in += 1 * d_hid
self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout)
self.context_attn = LSTMDecoderAttention(d_hid, dot=True)
self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
def forward(self, input, context, output=None, hidden=None, context_alignment=None):
context_output = output.squeeze(1) if output is not None else self.make_init_output(context)
context_alignment = context_alignment if context_alignment is not None else self.make_init_output(context)
context_outputs, vocab_pointer_switches, context_attentions, context_alignments = [], [], [], []
for emb_t in input.split(1, dim=1):
emb_t = emb_t.squeeze(1)
context_output = self.dropout(context_output)
if self.input_feed:
emb_t = torch.cat([emb_t, context_output], 1)
dec_state, hidden = self.rnn(emb_t, hidden)
context_output, context_attention, context_alignment = self.context_attn(dec_state, context)
vocab_pointer_switch = self.vocab_pointer_switch(torch.cat([dec_state, context_output, emb_t], -1))
context_output = self.dropout(context_output)
context_outputs.append(context_output)
vocab_pointer_switches.append(vocab_pointer_switch)
context_attentions.append(context_attention)
context_alignments.append(context_alignment)
context_outputs, vocab_pointer_switches, context_attention = [self.package_outputs(x) for x in [context_outputs, vocab_pointer_switches, context_attentions]]
return context_outputs, context_attention, context_alignment, vocab_pointer_switches, hidden
def applyMasks(self, context_mask):
self.context_attn.applyMasks(context_mask)
def make_init_output(self, context):
batch_size = context.size(0)
h_size = (batch_size, self.d_hid)
return context.new_zeros(h_size)
def package_outputs(self, outputs):
outputs = torch.stack(outputs, dim=1)
return outputs

View File

@ -1,253 +0,0 @@
#
# Copyright (c) 2018, Salesforce, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from .common import positional_encodings_like, INF, EPSILON, TransformerEncoder, TransformerDecoder, PackedLSTM, LSTMDecoderAttention, LSTMDecoder, Embedding, Feedforward, mask
class SelfAttentivePointerGenerator(nn.Module):
def __init__(self, field, args):
super().__init__()
self.field = field
self.args = args
self.pad_idx = self.field.vocab.stoi[self.field.pad_token]
self.encoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio)
self.decoder_embeddings = Embedding(field, args.dimension,
dropout=args.dropout_ratio)
self.bilstm_before_coattention = PackedLSTM(args.dimension, args.dimension,
batch_first=True, dropout=args.dropout_ratio, bidirectional=True, num_layers=1)
dim = args.dimension + args.dimension
self.context_bilstm_after_coattention = PackedLSTM(dim, args.dimension,
batch_first=True, dropout=args.dropout_ratio, bidirectional=True,
num_layers=args.rnn_layers)
self.self_attentive_encoder_context = TransformerEncoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
self.bilstm_context = PackedLSTM(args.dimension, args.dimension,
batch_first=True, dropout=args.dropout_ratio, bidirectional=True,
num_layers=args.rnn_layers)
self.self_attentive_decoder = TransformerDecoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
self.dual_ptr_rnn_decoder = DualPtrRNNDecoder(args.dimension, args.dimension,
dropout=args.dropout_ratio, num_layers=args.rnn_layers)
self.generative_vocab_size = min(len(field.vocab), args.max_generative_vocab)
self.out = nn.Linear(args.dimension, self.generative_vocab_size)
self.dropout = nn.Dropout(0.4)
def set_embeddings(self, embeddings):
self.encoder_embeddings.set_embeddings(embeddings)
self.decoder_embeddings.set_embeddings(embeddings)
def forward(self, batch):
context, context_lengths, context_limited = batch.context_question, batch.context_question_lengths, batch.context_question_limited
answer, answer_lengths, answer_limited = batch.answer, batch.answer_lengths, batch.answer_limited
oov_to_limited_idx, limited_idx_to_full_idx = batch.oov_to_limited_idx, batch.limited_idx_to_full_idx
def map_to_full(x):
return limited_idx_to_full_idx[x]
self.map_to_full = map_to_full
context_embedded = self.encoder_embeddings(context)
context_encoded = self.bilstm_before_coattention(context_embedded, context_lengths)[0]
context_padding = context.data == self.pad_idx
context_summary = torch.cat([context_encoded, context_embedded], -1)
condensed_context, _ = self.context_bilstm_after_coattention(context_summary, context_lengths)
self_attended_context = self.self_attentive_encoder_context(condensed_context, padding=context_padding)
final_context, (context_rnn_h, context_rnn_c) = self.bilstm_context(self_attended_context[-1], context_lengths)
context_rnn_state = [self.reshape_rnn_state(x) for x in (context_rnn_h, context_rnn_c)]
context_indices = context_limited if context_limited is not None else context
answer_indices = answer_limited if answer_limited is not None else answer
pad_idx = self.field.decoder_stoi[self.field.pad_token]
context_padding = context_indices.data == pad_idx
self.dual_ptr_rnn_decoder.applyMasks(context_padding)
if self.training:
answer_padding = answer_indices.data == pad_idx
answer_embedded = self.decoder_embeddings(answer)
self_attended_decoded = self.self_attentive_decoder(answer_embedded[:, :-1].contiguous(), self_attended_context, context_padding=context_padding, answer_padding=answer_padding[:, :-1], positional_encodings=True)
decoder_outputs = self.dual_ptr_rnn_decoder(self_attended_decoded,
final_context, hidden=context_rnn_state)
rnn_output, context_attention, context_alignment, vocab_pointer_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch,
context_attention,
context_indices,
oov_to_limited_idx)
probs, targets = mask(answer_indices[:, 1:].contiguous(), probs.contiguous(), pad_idx=pad_idx)
loss = F.nll_loss(probs.log(), targets)
return loss, None
else:
return None, self.greedy(self_attended_context, final_context,
context_indices,
oov_to_limited_idx, rnn_state=context_rnn_state).data
def reshape_rnn_state(self, h):
return h.view(h.size(0) // 2, 2, h.size(1), h.size(2)) \
.transpose(1, 2).contiguous() \
.view(h.size(0) // 2, h.size(1), h.size(2) * 2).contiguous()
def probs(self, generator, outputs, vocab_pointer_switches,
context_attention,
context_indices,
oov_to_limited_idx):
size = list(outputs.size())
size[-1] = self.generative_vocab_size
scores = generator(outputs.view(-1, outputs.size(-1))).view(size)
p_vocab = F.softmax(scores, dim=scores.dim()-1)
scaled_p_vocab = vocab_pointer_switches.expand_as(p_vocab) * p_vocab
effective_vocab_size = self.generative_vocab_size + len(oov_to_limited_idx)
if self.generative_vocab_size < effective_vocab_size:
size[-1] = effective_vocab_size - self.generative_vocab_size
buff = scaled_p_vocab.new_full(size, EPSILON)
scaled_p_vocab = torch.cat([scaled_p_vocab, buff], dim=buff.dim()-1)
p_context_ptr = scaled_p_vocab.new_full(scaled_p_vocab.size(), EPSILON)
p_context_ptr.scatter_add_(p_context_ptr.dim()-1, context_indices.unsqueeze(1).expand_as(context_attention), context_attention)
scaled_p_context_ptr = (1 - vocab_pointer_switches).expand_as(p_context_ptr) * p_context_ptr
probs = scaled_p_vocab + scaled_p_context_ptr
return probs
def greedy(self, self_attended_context, context, context_indices, oov_to_limited_idx, rnn_state=None):
B, TC, C = context.size()
T = self.args.max_output_length
outs = context.new_full((B, T), self.field.decoder_stoi['<pad>'], dtype=torch.long)
hiddens = [self_attended_context[0].new_zeros((B, T, C))
for l in range(len(self.self_attentive_decoder.layers) + 1)]
hiddens[0] = hiddens[0] + positional_encodings_like(hiddens[0])
eos_yet = context.data.new(B).byte().zero_()
rnn_output, context_alignment = None, None
for t in range(T):
if t == 0:
embedding = self.decoder_embeddings(
self_attended_context[-1].new_full((B, 1), self.field.vocab.stoi['<init>'], dtype=torch.long), [1]*B)
else:
embedding = self.decoder_embeddings(outs[:, t - 1].unsqueeze(1), [1]*B)
hiddens[0][:, t] = hiddens[0][:, t] + (math.sqrt(self.self_attentive_decoder.d_model) * embedding).squeeze(1)
for l in range(len(self.self_attentive_decoder.layers)):
hiddens[l + 1][:, t] = self.self_attentive_decoder.layers[l].feedforward(
self.self_attentive_decoder.layers[l].attention(
self.self_attentive_decoder.layers[l].selfattn(hiddens[l][:, t], hiddens[l][:, :t + 1], hiddens[l][:, :t + 1])
, self_attended_context[l], self_attended_context[l]))
decoder_outputs = self.dual_ptr_rnn_decoder(hiddens[-1][:, t].unsqueeze(1),
context,
context_alignment=context_alignment,
hidden=rnn_state, output=rnn_output)
rnn_output, context_attention, context_alignment, vocab_pointer_switch, rnn_state = decoder_outputs
probs = self.probs(self.out, rnn_output, vocab_pointer_switch,
context_attention,
context_indices,
oov_to_limited_idx)
pred_probs, preds = probs.max(-1)
preds = preds.squeeze(1)
eos_yet = eos_yet | (preds == self.field.decoder_stoi['<eos>'])
outs[:, t] = preds.cpu().apply_(self.map_to_full)
if eos_yet.all():
break
return outs
class DualPtrRNNDecoder(nn.Module):
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1):
super().__init__()
self.d_hid = d_hid
self.d_in = d_in
self.num_layers = num_layers
self.dropout = nn.Dropout(dropout)
self.input_feed = True
if self.input_feed:
d_in += 1 * d_hid
self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout)
self.context_attn = LSTMDecoderAttention(d_hid, dot=True)
self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
def forward(self, input, context, output=None, hidden=None, context_alignment=None):
context_output = output.squeeze(1) if output is not None else self.make_init_output(context)
context_alignment = context_alignment if context_alignment is not None else self.make_init_output(context)
context_outputs, vocab_pointer_switches, context_attentions, context_alignments = [], [], [], []
for emb_t in input.split(1, dim=1):
emb_t = emb_t.squeeze(1)
context_output = self.dropout(context_output)
if self.input_feed:
emb_t = torch.cat([emb_t, context_output], 1)
dec_state, hidden = self.rnn(emb_t, hidden)
context_output, context_attention, context_alignment = self.context_attn(dec_state, context)
vocab_pointer_switch = self.vocab_pointer_switch(torch.cat([dec_state, context_output, emb_t], -1))
context_output = self.dropout(context_output)
context_outputs.append(context_output)
vocab_pointer_switches.append(vocab_pointer_switch)
context_attentions.append(context_attention)
context_alignments.append(context_alignment)
context_outputs, vocab_pointer_switches, context_attention = [self.package_outputs(x) for x in [context_outputs, vocab_pointer_switches, context_attentions]]
return context_outputs, context_attention, context_alignment, vocab_pointer_switches, hidden
def applyMasks(self, context_mask):
self.context_attn.applyMasks(context_mask)
def make_init_output(self, context):
batch_size = context.size(0)
h_size = (batch_size, self.d_hid)
return context.new_zeros(h_size)
def package_outputs(self, outputs):
outputs = torch.stack(outputs, dim=1)
return outputs