Update README.md
This commit is contained in:
parent
1f275a898d
commit
d33e180395
|
@ -142,14 +142,14 @@ The alignment code has been updated and improved since 0.6.0 release, so if you
|
||||||
|
|
||||||
First run a bootleg model to extract mentions, entity candidates, and contextual embeddings for the mentions.
|
First run a bootleg model to extract mentions, entity candidates, and contextual embeddings for the mentions.
|
||||||
```bash
|
```bash
|
||||||
genienlp bootleg-dump-features --train_tasks <train_task_names> --save <savedir> --preserve_case --data <dataset_dir> --train_batch_tokens 1200 --val_batch_size 2000 --database_type json --database_dir <database_dir> --ned_features type_id type_prob --ned_features_size 1 1 --ned_features_default_val 0 1.0 --num_workers 0 --min_entity_len 1 --max_entity_len 4 --bootleg_model <bootleg_model>
|
genienlp bootleg-dump-features --train_tasks <train_task_names> --save <savedir> --preserve_case --data <dataset_dir> --train_batch_tokens 1200 --val_batch_size 2000 --database_type json --database_dir <database_dir> --min_entity_len 1 --max_entity_len 4 --bootleg_model <bootleg_model>
|
||||||
```
|
```
|
||||||
This command generates several output files. In `<dataset_dir>` you should see a `prep` dir which contains preprocessed data (e.g. data converted to memory-mapped format, several array to facilitate embedding lookup etc.) If your dataset doesn't change you can reuse the same files.
|
This command generates several output files. In `<dataset_dir>` you should see a `prep` dir which contains preprocessed data (e.g. data converted to memory-mapped format, several array to facilitate embedding lookup etc.) If your dataset doesn't change you can reuse the same files.
|
||||||
It will also generate several files in <results_temp> folder. In `eval_bootleg/[train|eval]/<bootleg_model>/bootleg_lables.jsonl` you can see the examples, mentions, predicted candidates and their probabilities according to bootleg.
|
It will also generate several files in <results_temp> folder. In `eval_bootleg/[train|eval]/<bootleg_model>/bootleg_lables.jsonl` you can see the examples, mentions, predicted candidates and their probabilities according to bootleg.
|
||||||
|
|
||||||
Now you can use the extracted features from bootleg in downstream tasks such as semantic parsing to improve named entity understanding and consequently generation:
|
Now you can use the extracted features from bootleg in downstream tasks such as semantic parsing to improve named entity understanding and consequently generation:
|
||||||
```bash
|
```bash
|
||||||
genienlp train --train_tasks <train_task_names> --train_iterations <iterations> --preserve_case --save <savedir> --data <dataset_dir> --model TransformerLSTM --pretrained_model bert-base-uncased --trainable_decoder_embeddings 50 --train_batch_tokens 1000 --val_batch_size 1000 --do_ned --database_type json --database_dir <database_dir> --ned_retrieve_method bootleg --ned_features type_id type_prob --ned_features_size 1 1 --ned_features_default_val 0 1.0 --num_workers 0 --min_entity_len 1 --max_entity_len 4 --bootleg_model <bootleg_model>
|
genienlp train --train_tasks <train_task_names> --train_iterations <iterations> --preserve_case --save <savedir> --data <dataset_dir> --model TransformerSeq2Seq --pretrained_model facebook/bart-base --train_batch_tokens 1000 --val_batch_size 1000 --do_ned --database_dir <database_dir> --ned_retrieve_method bootleg --entity_attributes type_id type_prob --add_entities_to_text append --bootleg_model <bootleg_model>
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue