updated README re: docker images for devices and pytorch versions

This commit is contained in:
Bryan Marcus McCann 2018-10-23 23:26:46 +00:00 committed by Bryan McCann
parent 2bcd810957
commit c5719e7545
1 changed files with 20 additions and 15 deletions

View File

@ -32,13 +32,18 @@ cp local_data/schema.txt .data/schema/
You can run a command inside the docker image using
```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "COMMAND"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "COMMAND"
```
## GPU vs. CPU
The `devices` argument can be used to specify the devices for training. For CPU training, specify `--devices -1`; for GPU training, specify `--devices DEVICEID`. Note that Multi-GPU training is currently a WIP, so `--device` is sufficient for commands below. The default will be to train on GPU 0 as training on CPU will be quite time-consuming to train on all ten tasks in decaNLP.
If you want to use CPU, then remove the `cuda9_` prefix from commands below. This will allow you to use Docker without CUDA.
## PyTorch Version
The research associated with the original paper was done using Pytorch 0.3, but we have since migrated to 0.4. If you want to replicate results from the paper, then to be safe, you should use the code at a commit on or before 203a02e2326de65400a8d3dce63fdb0f4ae0c324. You should also replace `toch041` with `torch03` in the commands below to access a Docker image with the older version of PyTorch.
## Training
For example, to train a Multitask Question Answering Network (MQAN) on the Stanford Question Answering Dataset (SQuAD) on GPU 0:
@ -48,17 +53,17 @@ nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decan
To multitask with the fully joint, round-robin training described in the paper, you can add multiple tasks:
```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --device 0"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --device 0"
```
To train on the entire Natural Language Decathlon:
```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
```
To pretrain on `n_jump_start=1` tasks for `jump_start=75000` iterations before switching to round-robin sampling of all tasks in the Natural Language Decathlon:
```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --n_jump_start 1 --jump_start 75000 --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/train.py --n_jump_start 1 --jump_start 75000 --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
```
This jump starting (or pretraining) on a subset of tasks can be done for any set of tasks, not only the entirety of decaNLP.
@ -67,7 +72,7 @@ This jump starting (or pretraining) on a subset of tasks can be done for any set
If you would like to make use of tensorboard, run (typically in a `tmux` pane or equivalent):
```bash
docker run -it --rm -p 0.0.0.0:6006:6006 -v `pwd`:/decaNLP/ decanlp bash -c "tensorboard --logdir /decaNLP/results"
docker run -it --rm -p 0.0.0.0:6006:6006 -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "tensorboard --logdir /decaNLP/results"
```
If you are running the server on a remote machine, you can run the following on your local machine to forward to http://localhost:6006/:
@ -97,12 +102,12 @@ If you are having trouble with the specified port on either machine, run `lsof -
You can evaluate a model for a specific task with `EVALUATION_TYPE` as `validation` or `test`:
```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0 --tasks squad"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0 --tasks squad"
```
or evaluate on the entire decathlon by removing any task specification:
```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0"
```
For test performance, please use the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/), [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/), and [WikiSQL](https://github.com/salesforce/WikiSQL) evaluation systems. For WikiSQL, there is a detailed walk-through of how to get test numbers in the section of this document concerning [pretrained models](https://github.com/salesforce/decaNLP#pretrained-models).
@ -114,7 +119,7 @@ This model is the best MQAN trained on decaNLP so far. It was trained first on S
```bash
wget https://s3.amazonaws.com/research.metamind.io/decaNLP/pretrained/mqan_decanlp_qa_first_cpu.tar.gz
tar -xvzf mqan_decanlp_qa_first_cpu.tar.gz
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --device 0"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --device 0"
```
This model is the best MQAN trained on WikiSQL alone, which established [a new state-of-the-art performance by several points on that task](https://github.com/salesforce/WikiSQL): 73.2 / 75.4 / 81.4 (ordered test logical form accuracy, unordered test logical form accuracy, test execution accuracy).
@ -122,13 +127,13 @@ This model is the best MQAN trained on WikiSQL alone, which established [a new s
```bash
wget https://s3.amazonaws.com/research.metamind.io/decaNLP/pretrained/mqan_wikisql_cpu.tar.gz
tar -xvzf mqan_wikisql_cpu.tar.gz
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate test --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql"
docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl valid"
docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl test"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate test --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql"
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl valid"
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl test"
git clone https://github.com/salesforce/WikiSQL.git #git@github.com:salesforce/WikiSQL.git for ssh
docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/dev.jsonl /decaNLP/.data/wikisql/data/dev.db /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/test.jsonl /decaNLP/.data/wikisql/data/test.db /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/dev.jsonl /decaNLP/.data/wikisql/data/dev.db /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/test.jsonl /decaNLP/.data/wikisql/data/test.db /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
```
## Inference on a Custom Dataset
@ -141,7 +146,7 @@ touch .data/my_custom_dataset/val.jsonl
echo '{"context": "The answer is answer.", "question": "What is the answer?", "answer": "answer"}' >> .data/my_custom_dataset/val.jsonl
# TODO add your own examples line by line to val.jsonl in the form of a JSON dictionary, as demonstrated above.
# Make sure to delete the first line if you don't want the demonstrated example.
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate valid --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --tasks my_custom_dataset"
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate valid --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --tasks my_custom_dataset"
```
You should get output that ends with something like this:
```