Remove unused code
This commit is contained in:
parent
d3d2d7c89f
commit
bd0297e00c
|
@ -1,33 +1,31 @@
|
|||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
models/__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# added manually
|
||||
.data
|
||||
.embeddings
|
||||
__pycache__/
|
||||
models/__pycache__/
|
||||
multiprocess/__pycache__/
|
||||
results/
|
||||
tests/embeddings/*
|
||||
local_files
|
||||
local_scripts/*
|
||||
dataset/*
|
||||
generated/*
|
||||
*events.out.tfevents*
|
||||
|
||||
.DS_Store
|
||||
.idea/
|
||||
.vscode/
|
||||
models/.DS_Store
|
||||
multiprocess/.DS_Store
|
||||
text/.DS_Store
|
||||
src/
|
||||
workdir/
|
||||
*save*/
|
||||
|
||||
lightning_logs/
|
||||
pytorch_model.bin
|
||||
*.pth
|
||||
tests/embeddings/*
|
||||
tests/dataset-*
|
||||
tests/dataset/*
|
||||
tests/database/*
|
||||
|
|
|
@ -77,21 +77,21 @@ def parse_argv(parser):
|
|||
'If sentence_batching is used, this will be interpreted as number of examples.')
|
||||
parser.add_argument('--jump_start', default=0, type=int, help='number of iterations to give jump started tasks')
|
||||
parser.add_argument('--n_jump_start', default=0, type=int, help='how many tasks to jump start (presented in order)')
|
||||
parser.add_argument('--num_print', default=15, type=int,
|
||||
parser.add_argument('--num_print', default=10, type=int,
|
||||
help='how many validation examples with greedy output to print to std out')
|
||||
|
||||
parser.add_argument('--no_tensorboard', action='store_false', dest='tensorboard',
|
||||
help='Turn off tensorboard logging')
|
||||
parser.add_argument('--tensorboard_dir', default=None,
|
||||
help='Directory where to save Tensorboard logs (defaults to --save)')
|
||||
parser.add_argument('--max_to_keep', default=5, type=int, help='number of checkpoints to keep')
|
||||
parser.add_argument('--log_every', default=int(1e2), type=int, help='how often to log results in # of iterations')
|
||||
parser.add_argument('--save_every', default=int(1e3), type=int,
|
||||
parser.add_argument('--max_to_keep', default=3, type=int, help='number of checkpoints to keep')
|
||||
parser.add_argument('--log_every', default=100, type=int, help='how often to log results in # of iterations')
|
||||
parser.add_argument('--save_every', default=1000, type=int,
|
||||
help='how often to save a checkpoint in # of iterations')
|
||||
|
||||
parser.add_argument('--val_tasks', nargs='+', type=str, dest='val_task_names',
|
||||
help='tasks to collect evaluation metrics for')
|
||||
parser.add_argument('--val_every', default=int(1e3), type=int,
|
||||
parser.add_argument('--val_every', default=1000, type=int,
|
||||
help='how often to run validation in # of iterations')
|
||||
parser.add_argument('--val_batch_size', nargs='+', default=[3000], type=int,
|
||||
help='Number of tokens in each batch for validation, corresponding to tasks in --val_tasks')
|
||||
|
|
|
@ -49,8 +49,6 @@ class Example(NamedTuple):
|
|||
answer: str
|
||||
context_plus_question: List[str]
|
||||
|
||||
vocab_fields = ['context', 'question', 'answer']
|
||||
|
||||
@staticmethod
|
||||
def from_raw(example_id: str, context: str, question: str, answer: str, preprocess = identity, lower=False):
|
||||
args = [example_id]
|
||||
|
|
|
@ -68,8 +68,8 @@ class MQANDecoder(nn.Module):
|
|||
def forward(self, batch, final_context, context_rnn_state, encoder_loss,
|
||||
current_token_id=None, decoder_wrapper=None, expansion_factor=1, generation_dict=None):
|
||||
|
||||
context, context_lengths, context_limited = batch.context.value, batch.context.length, batch.context.limited
|
||||
answer, answer_lengths, answer_limited = batch.answer.value, batch.answer.length, batch.answer.limited
|
||||
context, context_limited = batch.context.value, batch.context.limited
|
||||
answer, answer_limited = batch.answer.value, batch.answer.limited
|
||||
decoder_vocab = self.numericalizer.decoder_vocab
|
||||
self.map_to_full = decoder_vocab.decode
|
||||
context_padding = context.data == self.pad_idx
|
||||
|
|
|
@ -138,7 +138,6 @@ def train_step(model, batch, iteration, opt, devices, lr_scheduler=None, grad_cl
|
|||
for p in model.parameters():
|
||||
if p.grad is None:
|
||||
continue
|
||||
# print('p.grad = ', p.grad)
|
||||
p.grad /= accumulated_batch_lengths
|
||||
accumulated_batch_lengths = 0
|
||||
if grad_clip > 0.0:
|
||||
|
@ -367,8 +366,7 @@ def train(args, devices, model, opt, lr_scheduler, train_sets, train_iterations,
|
|||
grad_clip=args.grad_clip,
|
||||
gradient_accumulation_steps=args.gradient_accumulation_steps)
|
||||
if loss is None:
|
||||
logger.info(
|
||||
'Encountered NAN loss during training... Continue training ignoring the current batch')
|
||||
logger.info('Encountered NAN loss during training... Continue training ignoring the current batch')
|
||||
continue
|
||||
if loss < 1e-6:
|
||||
zero_loss += 1
|
||||
|
|
|
@ -435,19 +435,6 @@ def make_data_loader(dataset, numericalizer, batch_size, device=None, train=Fals
|
|||
return data_loader
|
||||
|
||||
|
||||
def pad(x, new_channel, dim, val=None):
|
||||
if x.size(dim) > new_channel:
|
||||
x = x.narrow(dim, 0, new_channel)
|
||||
channels = x.size()
|
||||
assert (new_channel >= channels[dim])
|
||||
if new_channel == channels[dim]:
|
||||
return x
|
||||
size = list(channels)
|
||||
size[dim] = new_channel - size[dim]
|
||||
padding = x.new(*size).fill_(val)
|
||||
return torch.cat([x, padding], dim)
|
||||
|
||||
|
||||
def have_multilingual(task_names):
|
||||
return any(['multilingual' in name for name in task_names])
|
||||
|
||||
|
|
Loading…
Reference in New Issue