Clean up old checkpoints as we go along
Introduce an utility Saver class, that does what tensorflow's Saver does: keeps track of saved checkpoints in a separate file, and deletes the old ones before saving a new one.
This commit is contained in:
parent
410c6cd8ec
commit
b950927a2b
|
@ -32,30 +32,25 @@
|
|||
import os
|
||||
import math
|
||||
import time
|
||||
import random
|
||||
import collections
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
import logging
|
||||
from pprint import pformat
|
||||
from logging import handlers
|
||||
import ujson as json
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from .text import torchtext
|
||||
|
||||
from tensorboardX import SummaryWriter
|
||||
import string
|
||||
|
||||
from decanlp import arguments
|
||||
from . import arguments
|
||||
from . import models
|
||||
from .validate import validate
|
||||
from .multiprocess import Multiprocess, DistributedDataParallel
|
||||
from .metrics import compute_metrics
|
||||
from .util import elapsed_time, get_splits, batch_fn, set_seed, preprocess_examples, get_trainable_params, count_params
|
||||
from .utils.saver import Saver
|
||||
|
||||
def initialize_logger(args, rank='main'):
|
||||
# set up file logger
|
||||
|
@ -185,6 +180,7 @@ def train(args, model, opt, train_iters, train_iterations, field, rank=0, world_
|
|||
local_train_metric_dict = {}
|
||||
|
||||
train_iters = [(task, iter(train_iter)) for task, train_iter in train_iters]
|
||||
saver = Saver(args.log_dir)
|
||||
|
||||
while True:
|
||||
# For some number of rounds, we 'jump start' some subset of the tasks
|
||||
|
@ -254,7 +250,7 @@ def train(args, model, opt, train_iters, train_iterations, field, rank=0, world_
|
|||
save_state_dict = {'model_state_dict': {k: v.cpu() for k, v in model.state_dict().items()}, 'field': field,
|
||||
'best_decascore': best_decascore}
|
||||
|
||||
torch.save(save_state_dict, os.path.join(args.log_dir, f'iteration_{iteration}.pth'))
|
||||
saver.save(save_state_dict, global_step=iteration)
|
||||
if should_save_best:
|
||||
logger.info(f'{args.timestamp}:{elapsed_time(logger)}:iteration_{iteration}:{round_progress}train_{task}:{task_progress}found new best model')
|
||||
torch.save(save_state_dict, os.path.join(args.log_dir, 'best.pth'))
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
#
|
||||
# Copyright (c) 2018, The Board of Trustees of the Leland Stanford Junior University
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# * Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
#
|
||||
# * Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# * Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
'''
|
||||
Created on Mar 3, 2019
|
||||
|
||||
@author: gcampagn
|
||||
'''
|
||||
|
||||
import torch
|
||||
import ujson as json
|
||||
import os
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class Saver(object):
|
||||
'''
|
||||
Wrap pytorch's save functionality into an interface similar to tensorflow.train.Saver
|
||||
|
||||
In particular, this class takes care of automatically cleaning up old checkpoints,
|
||||
and creating checkpoint files to keep track of which saves are valid and which are not.
|
||||
'''
|
||||
|
||||
def __init__(self, savedir, max_to_keep=5):
|
||||
self._savedir = savedir
|
||||
self._max_to_keep = max_to_keep
|
||||
assert max_to_keep >= 1
|
||||
|
||||
self._loaded_last_checkpoints = False
|
||||
self._latest_checkpoint = None
|
||||
self._all_checkpoints = None
|
||||
|
||||
def _maybe_load_last_checkpoints(self):
|
||||
if self._loaded_last_checkpoints:
|
||||
return
|
||||
|
||||
try:
|
||||
with open(os.path.join(self._savedir, 'checkpoint.json')) as fp:
|
||||
data = json.load(fp)
|
||||
self._loaded_last_checkpoints = True
|
||||
self._all_checkpoints = data['all']
|
||||
self._latest_checkpoint = data['latest']
|
||||
except FileNotFoundError:
|
||||
self._loaded_last_checkpoints = True
|
||||
self._all_checkpoints = []
|
||||
self._latest_checkpoint = None
|
||||
|
||||
def save(self, save_dict, global_step):
|
||||
self._maybe_load_last_checkpoints()
|
||||
|
||||
filename = 'iteration_' + str(global_step)
|
||||
abspath = os.path.join(self._savedir, filename)
|
||||
|
||||
self._latest_checkpoint = filename
|
||||
self._all_checkpoints.append(filename)
|
||||
if len(self._all_checkpoints) > self._max_to_keep:
|
||||
try:
|
||||
todelete = self._all_checkpoints.pop(0)
|
||||
os.unlink(os.path.join(self._savedir, todelete))
|
||||
except (OSError, IOError) as e:
|
||||
logging.warn('Failed to delete old checkpoint: %s', e)
|
||||
torch.save(save_dict, abspath)
|
||||
|
Loading…
Reference in New Issue