adding paths to caches to logs

This commit is contained in:
Bryan Marcus McCann 2018-08-31 01:56:00 +00:00
parent a6349f4e86
commit a62377d6dd
1 changed files with 28 additions and 0 deletions

View File

@ -50,6 +50,7 @@ class IMDb(CQA, imdb.IMDb):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample))
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
for label in ['pos', 'neg']:
@ -62,6 +63,7 @@ class IMDb(CQA, imdb.IMDb):
if subsample is not None and len(examples) > subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super(imdb.IMDb, self).__init__(examples, fields, **kwargs)
@ -97,6 +99,7 @@ class SST(CQA):
examples = []
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
labels = ['negative', 'positive']
@ -115,6 +118,7 @@ class SST(CQA):
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
self.examples = examples
@ -155,6 +159,7 @@ class TranslationDataset(translation.TranslationDataset):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample))
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
langs = {'.de': 'German', '.en': 'English', '.fr': 'French', '.ar': 'Arabic', '.cs': 'Czech'}
@ -176,6 +181,7 @@ class TranslationDataset(translation.TranslationDataset):
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super(translation.TranslationDataset, self).__init__(examples, fields, **kwargs)
@ -207,6 +213,7 @@ class SQuAD(CQA, data.Dataset):
examples, all_answers = [], []
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples, all_answers = torch.load(cache_name)
else:
with open(os.path.expanduser(path)) as f:
@ -295,6 +302,7 @@ class SQuAD(CQA, data.Dataset):
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save((examples, all_answers), cache_name)
@ -361,6 +369,7 @@ class Summarization(CQA, data.Dataset):
examples = []
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
with open(os.path.expanduser(path)) as f:
@ -374,6 +383,7 @@ class Summarization(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super(Summarization, self).__init__(examples, fields, **kwargs)
@ -508,6 +518,7 @@ class WikiSQL(CQA, data.Dataset):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample))
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples, all_answers = torch.load(cache_name)
else:
@ -544,6 +555,7 @@ class WikiSQL(CQA, data.Dataset):
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save((examples, all_answers), cache_name)
super(WikiSQL, self).__init__(examples, fields, **kwargs)
@ -620,6 +632,7 @@ class SRL(CQA, data.Dataset):
examples, all_answers = [], []
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples, all_answers = torch.load(cache_name)
else:
with open(os.path.expanduser(path)) as f:
@ -636,6 +649,7 @@ class SRL(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save((examples, all_answers), cache_name)
FIELD = data.Field(batch_first=True, use_vocab=False, sequential=False,
@ -770,6 +784,7 @@ class WinogradSchema(CQA, data.Dataset):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample))
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
examples = []
@ -783,6 +798,7 @@ class WinogradSchema(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super(WinogradSchema, self).__init__(examples, fields, **kwargs)
@ -885,6 +901,7 @@ class WOZ(CQA, data.Dataset):
examples, all_answers = [], []
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample), description)
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples, all_answers = torch.load(cache_name)
else:
with open(os.path.expanduser(path)) as f:
@ -900,6 +917,7 @@ class WOZ(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save((examples, all_answers), cache_name)
super(WOZ, self).__init__(examples, fields, **kwargs)
@ -998,6 +1016,7 @@ class MultiNLI(CQA, data.Dataset):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample), description)
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
examples = []
@ -1012,6 +1031,7 @@ class MultiNLI(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super(MultiNLI, self).__init__(examples, fields, **kwargs)
@ -1075,6 +1095,7 @@ class ZeroShotRE(CQA, data.Dataset):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample))
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
examples = []
@ -1089,6 +1110,7 @@ class ZeroShotRE(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super().__init__(examples, fields, **kwargs)
@ -1200,6 +1222,7 @@ class OntoNotesNER(CQA, data.Dataset):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample), subtask, str(nones))
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
examples = []
@ -1219,6 +1242,7 @@ class OntoNotesNER(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super(OntoNotesNER, self).__init__(examples, fields, **kwargs)
@ -1383,6 +1407,7 @@ class SNLI(CQA, data.Dataset):
cache_name = os.path.join(os.path.dirname(path), '.cache', os.path.basename(path), str(subsample))
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
examples = []
@ -1398,6 +1423,7 @@ class SNLI(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super().__init__(examples, fields, **kwargs)
@ -1448,6 +1474,7 @@ class JSON(CQA, data.Dataset):
examples = []
if os.path.exists(cache_name):
print(f'Loading cached data from {cache_name}')
examples = torch.load(cache_name)
else:
with open(os.path.expanduser(path)) as f:
@ -1461,6 +1488,7 @@ class JSON(CQA, data.Dataset):
if subsample is not None and len(examples) >= subsample:
break
os.makedirs(os.path.dirname(cache_name), exist_ok=True)
print(f'Caching data to {cache_name}')
torch.save(examples, cache_name)
super(JSON, self).__init__(examples, fields, **kwargs)