repairing docker commands in readme
This commit is contained in:
parent
72aeb19ec3
commit
9447f41075
30
README.md
30
README.md
|
@ -32,12 +32,12 @@ If you want to use CPU, then remove the `nvidia-` and the `cuda9_` prefixes from
|
|||
|
||||
For example, if you have CUDA and all the necessary drivers and GPUs, you you can run a command inside the CUDA Docker image using:
|
||||
```bash
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "COMMAND --device 0"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "COMMAND --device 0"
|
||||
```
|
||||
|
||||
If you want to run the same command without CUDA:
|
||||
```bash
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:torch041 -c "COMMAND --device -1"
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "COMMAND --device -1"
|
||||
```
|
||||
|
||||
For those in the Docker know, you can look at the Dockerfiles used to build these two images in `dockerfiles/`.
|
||||
|
@ -55,17 +55,17 @@ nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decan
|
|||
|
||||
To multitask with the fully joint, round-robin training described in the paper, you can add multiple tasks:
|
||||
```bash
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --device 0"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --device 0"
|
||||
```
|
||||
|
||||
To train on the entire Natural Language Decathlon:
|
||||
```bash
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
|
||||
```
|
||||
|
||||
To pretrain on `n_jump_start=1` tasks for `jump_start=75000` iterations before switching to round-robin sampling of all tasks in the Natural Language Decathlon:
|
||||
```bash
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/train.py --n_jump_start 1 --jump_start 75000 --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/train.py --n_jump_start 1 --jump_start 75000 --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0"
|
||||
```
|
||||
This jump starting (or pretraining) on a subset of tasks can be done for any set of tasks, not only the entirety of decaNLP.
|
||||
|
||||
|
@ -76,7 +76,7 @@ If you would like to make use of tensorboard, you can add the `--tensorboard` fl
|
|||
To read those files and run the Tensorboard server, run (typically in a `tmux` pane or equivalent so that the process is not killed when you shut your laptop) the following command:
|
||||
|
||||
```bash
|
||||
docker run -it --rm -p 0.0.0.0:6006:6006 -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "tensorboard --logdir /decaNLP/results"
|
||||
docker run -it --rm -p 0.0.0.0:6006:6006 -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "tensorboard --logdir /decaNLP/results"
|
||||
```
|
||||
|
||||
If you are running the server on a remote machine, you can run the following on your local machine to forward to http://localhost:6006/:
|
||||
|
@ -106,12 +106,12 @@ If you are having trouble with the specified port on either machine, run `lsof -
|
|||
You can evaluate a model for a specific task with `EVALUATION_TYPE` as `validation` or `test`:
|
||||
|
||||
```bash
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0 --tasks squad"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0 --tasks squad"
|
||||
```
|
||||
|
||||
or evaluate on the entire decathlon by removing any task specification:
|
||||
```bash
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0"
|
||||
```
|
||||
|
||||
For test performance, please use the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/), [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/), and [WikiSQL](https://github.com/salesforce/WikiSQL) evaluation systems. For WikiSQL, there is a detailed walk-through of how to get test numbers in the section of this document concerning [pretrained models](https://github.com/salesforce/decaNLP#pretrained-models).
|
||||
|
@ -123,7 +123,7 @@ This model is the best MQAN trained on decaNLP so far. It was trained first on S
|
|||
```bash
|
||||
wget https://s3.amazonaws.com/research.metamind.io/decaNLP/pretrained/mqan_decanlp_qa_first_cpu.tar.gz
|
||||
tar -xvzf mqan_decanlp_qa_first_cpu.tar.gz
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --device 0"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --device 0"
|
||||
```
|
||||
|
||||
This model is the best MQAN trained on WikiSQL alone, which established [a new state-of-the-art performance by several points on that task](https://github.com/salesforce/WikiSQL): 73.2 / 75.4 / 81.4 (ordered test logical form accuracy, unordered test logical form accuracy, test execution accuracy).
|
||||
|
@ -132,12 +132,12 @@ This model is the best MQAN trained on WikiSQL alone, which established [a new s
|
|||
wget https://s3.amazonaws.com/research.metamind.io/decaNLP/pretrained/mqan_wikisql_cpu.tar.gz
|
||||
tar -xvzf mqan_wikisql_cpu.tar.gz
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate test --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql"
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl valid"
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl test"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/predict.py --evaluate test --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql"
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl valid"
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl test"
|
||||
git clone https://github.com/salesforce/WikiSQL.git #git@github.com:salesforce/WikiSQL.git for ssh
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/dev.jsonl /decaNLP/.data/wikisql/data/dev.db /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/test.jsonl /decaNLP/.data/wikisql/data/test.db /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/dev.jsonl /decaNLP/.data/wikisql/data/dev.db /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
|
||||
docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/WikiSQL/evaluate.py /decaNLP/.data/wikisql/data/test.jsonl /decaNLP/.data/wikisql/data/test.db /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl" # assumes that you have data stored in .data
|
||||
```
|
||||
|
||||
## Inference on a Custom Dataset
|
||||
|
@ -150,7 +150,7 @@ touch .data/my_custom_dataset/val.jsonl
|
|||
echo '{"context": "The answer is answer.", "question": "What is the answer?", "answer": "answer"}' >> .data/my_custom_dataset/val.jsonl
|
||||
# TODO add your own examples line by line to val.jsonl in the form of a JSON dictionary, as demonstrated above.
|
||||
# Make sure to delete the first line if you don't want the demonstrated example.
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ bmccann/decanlp:cuda9_torch041 -c "python /decaNLP/predict.py --evaluate valid --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --tasks my_custom_dataset"
|
||||
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/predict.py --evaluate valid --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --tasks my_custom_dataset"
|
||||
```
|
||||
You should get output that ends with something like this:
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue