Update README.md
This commit is contained in:
parent
1e1e132ba8
commit
5cec08df1b
|
@ -85,18 +85,19 @@ use standard input/output instead of TCP.
|
|||
|
||||
### Calibrating a trained model
|
||||
|
||||
Calibrate the confidence scores of a trained model:
|
||||
Calibrate the confidence scores of a trained model. This is usually done on the validation set. After calibration, you can use the confidence scores `genienlp predict` outputs to identifying how confident the model is about each one of its predictions.
|
||||
|
||||
1. Calculate and save confidence features of the evaluation set in a pickle file:
|
||||
|
||||
```bash
|
||||
genienlp predict --tasks almond --data <datadir> --path <model_dir> --save_confidence_features --confidence_feature_path <confidence_feature_file> --mc_dropout_num 1
|
||||
genienlp predict --tasks almond --data <datadir> --path <model_dir> --evaluate valid --eval_dir <output> --save_confidence_features --confidence_feature_path <confidence_feature_file> --mc_dropout_num 1
|
||||
```
|
||||
2. Train a boosted tree to map confidence features to a score between 0 and 1:
|
||||
|
||||
```bash
|
||||
genienlp calibrate --confidence_path <confidence_feature_file> --save <calibrator_directory> --name_prefix <calibrator_name>
|
||||
````
|
||||
Optionally, you can add `--plot` to this command to get 3 plots descirbing the quality of the calibrator. Note that you need to install the `matplotlib` package (version `>3`) first.
|
||||
3. Now if you provide `--calibrator_paths` during prediction, it will output confidence scores for each output:
|
||||
|
||||
```bash
|
||||
|
|
Loading…
Reference in New Issue