Update README.md

This commit is contained in:
Bryan McCann 2018-06-27 13:53:15 -07:00 committed by GitHub
parent 6e27de247f
commit 53ddbbe0b1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 5 additions and 5 deletions

View File

@ -37,17 +37,17 @@ nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash
For example, to train a Multitask Question Answering Network (MQAN) on the Stanford Question Answering Dataset (SQuAD): For example, to train a Multitask Question Answering Network (MQAN) on the Stanford Question Answering Dataset (SQuAD):
```bash ```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad --gpus DEVICE_ID" nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad --gpu DEVICE_ID"
``` ```
To multitask with the fully joint, round-robin training described in the paper, you can add multiple tasks: To multitask with the fully joint, round-robin training described in the paper, you can add multiple tasks:
```bash ```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --gpus DEVICE_ID" nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --gpu DEVICE_ID"
``` ```
To train on the entire Natural Language Decathlon: To train on the entire Natural Language Decathlon:
```bash ```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --gpus DEVICE_ID" nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --gpu DEVICE_ID"
``` ```
You can find a list of commands in `experiments.sh` that correspond to each trained model that we used to report validation results comparing models and training strategies in the paper. You can find a list of commands in `experiments.sh` that correspond to each trained model that we used to report validation results comparing models and training strategies in the paper.
@ -83,12 +83,12 @@ If you are having trouble with the specified port on either machine, run `lsof -
You can evaluate a model for a specific task with `EVALUATION_TYPE` as `validation` or `test`: You can evaluate a model for a specific task with `EVALUATION_TYPE` as `validation` or `test`:
```bash ```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --gpus DEVICE_ID --tasks squad" nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --gpu DEVICE_ID --tasks squad"
``` ```
or evaluate on the entire decathlon by removing any task specification: or evaluate on the entire decathlon by removing any task specification:
```bash ```bash
nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --gpus DEVICE_ID" nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --gpu DEVICE_ID"
``` ```
For test performance, please use the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/), [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/), and [WikiSQL](https://github.com/salesforce/WikiSQL) evaluation systems. For test performance, please use the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/), [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/), and [WikiSQL](https://github.com/salesforce/WikiSQL) evaluation systems.