diff --git a/README.md b/README.md index 53a77c5e..9b31653c 100644 --- a/README.md +++ b/README.md @@ -35,26 +35,30 @@ You can run a command inside the docker image using nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "COMMAND" ``` +## GPU vs. CPU + +The `devices` argument can be used to specify the devices for training. For CPU training, specify `--devices -1`; for GPU training, specify `--devices DEVICEID`. Note that Multi-GPU training is currently a WIP, so `--device` is sufficient for commands below. The default will be to train on GPU 0 as training on CPU will be quite time-consuming to train on all ten tasks in decaNLP. + ## Training -For example, to train a Multitask Question Answering Network (MQAN) on the Stanford Question Answering Dataset (SQuAD): +For example, to train a Multitask Question Answering Network (MQAN) on the Stanford Question Answering Dataset (SQuAD) on GPU 0: ```bash -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad --gpu DEVICE_ID" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) bmccann/decanlp:cuda9_torch041 bash -c "python /decaNLP/train.py --train_tasks squad --device 0" ``` To multitask with the fully joint, round-robin training described in the paper, you can add multiple tasks: ```bash -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --gpu DEVICE_ID" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de --train_iterations 1 --device 0" ``` To train on the entire Natural Language Decathlon: ```bash -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --gpu DEVICE_ID" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0" ``` To pretrain on `n_jump_start=1` tasks for `jump_start=75000` iterations before switching to round-robin sampling of all tasks in the Natural Language Decathlon: ```bash -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --n_jump_start 1 --jump_start 75000 --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --gpu DEVICE_ID" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/train.py --n_jump_start 1 --jump_start 75000 --train_tasks squad iwslt.en.de cnn_dailymail multinli.in.out sst srl zre woz.en wikisql schema --train_iterations 1 --device 0" ``` This jump starting (or pretraining) on a subset of tasks can be done for any set of tasks, not only the entirety of decaNLP. @@ -93,12 +97,12 @@ If you are having trouble with the specified port on either machine, run `lsof - You can evaluate a model for a specific task with `EVALUATION_TYPE` as `validation` or `test`: ```bash -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --gpu DEVICE_ID --tasks squad" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0 --tasks squad" ``` or evaluate on the entire decathlon by removing any task specification: ```bash -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --gpu DEVICE_ID" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ -u $(id -u):$(id -g) decanlp bash -c "python /decaNLP/predict.py --evaluate EVALUATION_TYPE --path PATH_TO_CHECKPOINT_DIRECTORY --device 0" ``` For test performance, please use the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/), [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/), and [WikiSQL](https://github.com/salesforce/WikiSQL) evaluation systems. For WikiSQL, there is a detailed walk-through of how to get test numbers in the section of this document concerning [pretrained models](https://github.com/salesforce/decaNLP#pretrained-models). @@ -110,7 +114,7 @@ This model is the best MQAN trained on decaNLP so far. It was trained first on S ```bash wget https://s3.amazonaws.com/research.metamind.io/decaNLP/pretrained/mqan_decanlp_qa_first_cpu.tar.gz tar -xvzf mqan_decanlp_qa_first_cpu.tar.gz -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --gpu 0" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --device 0" ``` This model is the best MQAN trained on WikiSQL alone, which established [a new state-of-the-art performance by several points on that task](https://github.com/salesforce/WikiSQL): 73.2 / 75.4 / 81.4 (ordered test logical form accuracy, unordered test logical form accuracy, test execution accuracy). @@ -118,8 +122,8 @@ This model is the best MQAN trained on WikiSQL alone, which established [a new s ```bash wget https://s3.amazonaws.com/research.metamind.io/decaNLP/pretrained/mqan_wikisql_cpu.tar.gz tar -xvzf mqan_wikisql_cpu.tar.gz -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --gpu 0 --tasks wikisql" -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate test --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --gpu 0 --tasks wikisql" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate validation --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate test --path /decaNLP/mqan_wikisql_cpu --checkpoint_name iteration_57000.pth --device 0 --tasks wikisql" docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/validation/wikisql_logical_forms.jsonl valid" docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/convert_to_logical_forms.py /decaNLP/.data/ /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql.ids.txt /decaNLP/mqan_wikisql_cpu/iteration_57000/test/wikisql_logical_forms.jsonl test" git clone https://github.com/salesforce/WikiSQL.git #git@github.com:salesforce/WikiSQL.git for ssh @@ -137,7 +141,7 @@ touch .data/my_custom_dataset/val.jsonl echo '{"context": "The answer is answer.", "question": "What is the answer?", "answer": "answer"}' >> .data/my_custom_dataset/val.jsonl # TODO add your own examples line by line to val.jsonl in the form of a JSON dictionary, as demonstrated above. # Make sure to delete the first line if you don't want the demonstrated example. -nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate valid --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --gpu 0 --tasks my_custom_dataset" +nvidia-docker run -it --rm -v `pwd`:/decaNLP/ decanlp bash -c "python /decaNLP/predict.py --evaluate valid --path /decaNLP/mqan_decanlp_qa_first_cpu --checkpoint_name iteration_1140000.pth --tasks my_custom_dataset" ``` You should get output that ends with something like this: ``` diff --git a/arguments.py b/arguments.py index d24c785a..7f7ec308 100644 --- a/arguments.py +++ b/arguments.py @@ -73,7 +73,7 @@ def parse(): parser.add_argument('--resume', action='store_true', help='whether to resume training with past optimizers') parser.add_argument('--seed', default=123, type=int, help='Random seed.') - parser.add_argument('--gpus', default=[0], nargs='+', type=int, help='a list of gpus that can be used for training (multi-gpu currently WIP)') + parser.add_argument('--devices', default=[0], nargs='+', type=int, help='a list of devices that can be used for training (multi-gpu currently WIP)') parser.add_argument('--backend', default='gloo', type=str, help='backend for distributed training') parser.add_argument('--no_commit', action='store_false', dest='commit', help='do not track the git commit associated with this training run') @@ -88,7 +88,7 @@ def parse(): args.val_tasks = deepcopy(args.train_tasks) if 'imdb' in args.val_tasks: args.val_tasks.remove('imdb') - args.world_size = len(args.gpus) if args.gpus[0] > -1 else -1 + args.world_size = len(args.devices) if args.devices[0] > -1 else -1 if args.world_size > 1: print('multi-gpu training is currently a work in progress') return diff --git a/predict.py b/predict.py index 0d900f66..819a75e4 100644 --- a/predict.py +++ b/predict.py @@ -175,7 +175,7 @@ def get_args(): parser.add_argument('--path', required=True) parser.add_argument('--evaluate', type=str, required=True) parser.add_argument('--tasks', default=['squad', 'iwslt.en.de', 'cnn_dailymail', 'multinli.in.out', 'sst', 'srl', 'zre', 'woz.en', 'wikisql', 'schema'], nargs='+') - parser.add_argument('--gpus', default=[0], nargs='+', type=int, help='a list of gpus that can be used (multi-gpu currently WIP)') + parser.add_argument('--devices', default=[0], nargs='+', type=int, help='a list of devices that can be used (multi-gpu currently WIP)') parser.add_argument('--seed', default=123, type=int, help='Random seed.') parser.add_argument('--data', default='/decaNLP/.data/', type=str, help='where to load data from.') parser.add_argument('--embeddings', default='/decaNLP/.embeddings', type=str, help='where to save embeddings.') diff --git a/train.py b/train.py index abda9a95..3508741f 100644 --- a/train.py +++ b/train.py @@ -352,7 +352,7 @@ def main(): field, train_sets, val_sets = prepare_data(args, field, logger) run_args = (field, train_sets, val_sets, save_dict) - if len(args.gpus) > 1: + if len(args.devices) > 1: logger.info(f'Multiprocessing') mp = Multiprocess(run, args) mp.run(run_args) diff --git a/util.py b/util.py index f648719b..753b8b03 100644 --- a/util.py +++ b/util.py @@ -68,10 +68,10 @@ def preprocess_examples(args, tasks, splits, field, logger=None, train=True): def set_seed(args, rank=None): - if rank is None and len(args.gpus) > 0: - ordinal = args.gpus[0] + if rank is None and len(args.devices) > 0: + ordinal = args.devices[0] else: - ordinal = args.gpus[rank] + ordinal = args.devices[rank] device = torch.device(f'cuda:{ordinal}' if ordinal > -1 else 'cpu') print(f'device: {device}') np.random.seed(args.seed)