flatbuffers/lobster/flatbuffers.lobster

285 lines
9.6 KiB
Plaintext

// Copyright 2018 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import std
namespace flatbuffers
class handle:
buf_:string
pos_:int
// More strongly typed than a naked int, at no cost.
struct offset:
o:int
enum sizeof:
sz_8 = 1
sz_16 = 2
sz_32 = 4
sz_64 = 8
sz_voffset = 2
sz_uoffset = 4
sz_soffset = 4
sz_metadata_fields = 2
class builder:
buf = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
current_vtable:[int] = []
head = 0
minalign = 1
object_end = 0
vtables:[int] = []
nested = false
finished = false
// Optionally call this right after creating the builder for a larger initial buffer.
def Initial(initial_size:int):
buf = "\x00".repeat_string(initial_size)
def Start():
// Get the start of useful data in the underlying byte buffer.
return buf.length - head
def Offset():
// Offset relative to the end of the buffer.
return offset { head }
// Returns a copy of the part of the buffer containing only the finished FlatBuffer
def SizedCopy():
assert finished
return buf.substring(Start(), -1)
def StartNesting():
assert not nested
nested = true
def EndNesting():
assert nested
nested = false
def StartObject(numfields):
StartNesting()
current_vtable = map(numfields): 0
object_end = head
minalign = 1
def EndObject():
EndNesting()
// Prepend a zero scalar to the object. Later in this function we'll
// write an offset here that points to the object's vtable:
PrependInt32(0)
let object_offset = head
// Write out new vtable speculatively.
let vtable_size = (current_vtable.length + sz_metadata_fields) * sz_voffset
while current_vtable.length:
let o = current_vtable.pop()
PrependVOffsetT(if o: object_offset - o else: 0)
// The two metadata fields are written last.
// First, store the object bytesize:
PrependVOffsetT(object_offset - object_end)
// Second, store the vtable bytesize:
PrependVOffsetT(vtable_size)
// Search backwards through existing vtables, because similar vtables
// are likely to have been recently appended. See
// BenchmarkVtableDeduplication for a case in which this heuristic
// saves about 30% of the time used in writing objects with duplicate
// tables.
def find_existing_table():
reverse(vtables) vt2_offset:
// Find the other vtable:
let vt2_start = buf.length - vt2_offset
let vt2_len = buf.read_int16_le(vt2_start)
// Compare the other vtable to the one under consideration.
// If they are equal, return the offset:
if vtable_size == vt2_len and
not compare_substring(buf, Start(), buf, vt2_start, vtable_size):
return vt2_offset
return 0
let existing_vtable = find_existing_table()
if existing_vtable:
// Found a duplicate vtable, remove the one we wrote.
head = object_offset
// Write the offset to the found vtable in the
// already-allocated offset at the beginning of this object:
buf.write_int32_le(Start(), existing_vtable - object_offset)
else:
// Did not find a vtable, so keep the one we wrote.
// Next, write the offset to the new vtable in the
// already-allocated offset at the beginning of this object:
buf.write_int32_le(buf.length - object_offset, head - object_offset)
// Finally, store this vtable in memory for future
// deduplication:
vtables.push(head)
return offset { object_offset }
def Pad(n):
for(n):
buf, head = buf.write_int8_le_back(head, 0)
def Prep(size, additional_bytes):
// Track the biggest thing we've ever aligned to.
if size > minalign:
minalign = size
// Find the amount of alignment needed such that `size` is properly
// aligned after `additionalBytes`:
let align_size = ((~(head + additional_bytes)) + 1) & (size - 1)
Pad(align_size)
def PrependUOffsetTRelative(off:offset):
// Prepends an unsigned offset into vector data, relative to where it will be written.
Prep(sz_uoffset, 0)
assert off.o <= head
PlaceUOffsetT(head - off.o + sz_uoffset)
def StartVector(elem_size, num_elems, alignment):
// Initializes bookkeeping for writing a new vector.
StartNesting()
Prep(sz_32, elem_size * num_elems)
Prep(alignment, elem_size * num_elems) // In case alignment > int.
return Offset()
def EndVector(vector_num_elems):
EndNesting()
// we already made space for this, so write without PrependUint32
PlaceUOffsetT(vector_num_elems)
return Offset()
def CreateString(s:string):
// writes a null-terminated byte string.
StartNesting()
Prep(sz_32, s.length + 1)
buf, head = buf.write_substring_back(head, s, true)
return EndVector(s.length)
def CreateByteVector(s:string):
// writes a non-null-terminated byte string.
StartNesting()
Prep(sz_32, s.length)
buf, head = buf.write_substring_back(head, s, false)
return EndVector(s.length)
def Slot(slotnum):
assert nested
while current_vtable.length <= slotnum: current_vtable.push(0)
current_vtable[slotnum] = head
def __Finish(root_table:offset, size_prefix:int):
// Finish finalizes a buffer, pointing to the given root_table
assert not finished
assert not nested
var prep_size = sz_32
if size_prefix:
prep_size += sz_32
Prep(minalign, prep_size)
PrependUOffsetTRelative(root_table)
if size_prefix:
PrependInt32(head)
finished = true
return Start()
def Finish(root_table:offset):
return __Finish(root_table, false)
def FinishSizePrefixed(root_table:offset):
return __Finish(root_table, true)
def PrependBool(x):
buf, head = buf.write_int8_le_back(head, x)
def PrependByte(x):
buf, head = buf.write_int8_le_back(head, x)
def PrependUint8(x):
buf, head = buf.write_int8_le_back(head, x)
def PrependUint16(x):
Prep(sz_16, 0)
buf, head = buf.write_int16_le_back(head, x)
def PrependUint32(x):
Prep(sz_32, 0)
buf, head = buf.write_int32_le_back(head, x)
def PrependUint64(x):
Prep(sz_64, 0)
buf, head = buf.write_int64_le_back(head, x)
def PrependInt8(x):
buf, head = buf.write_int8_le_back(head, x)
def PrependInt16(x):
Prep(sz_16, 0)
buf, head = buf.write_int16_le_back(head, x)
def PrependInt32(x):
Prep(sz_32, 0)
buf, head = buf.write_int32_le_back(head, x)
def PrependInt64(x):
Prep(sz_64, 0)
buf, head = buf.write_int64_le_back(head, x)
def PrependFloat32(x):
Prep(sz_32, 0)
buf, head = buf.write_float32_le_back(head, x)
def PrependFloat64(x):
Prep(sz_64, 0)
buf, head = buf.write_float64_le_back(head, x)
def PrependVOffsetT(x):
Prep(sz_voffset, 0)
buf, head = buf.write_int16_le_back(head, x)
def PlaceVOffsetT(x):
buf, head = buf.write_int16_le_back(head, x)
def PlaceSOffsetT(x):
buf, head = buf.write_int32_le_back(head, x)
def PlaceUOffsetT(x):
buf, head = buf.write_int32_le_back(head, x)
def PrependSlot(o:int, x, d, f):
if x != d:
f(x)
Slot(o)
def PrependBoolSlot(o, x, d): PrependSlot(o, x, d): PrependBool(_)
def PrependByteSlot(o, x, d): PrependSlot(o, x, d): PrependByte(_)
def PrependUint8Slot(o, x, d): PrependSlot(o, x, d): PrependUint8(_)
def PrependUint16Slot(o, x, d): PrependSlot(o, x, d): PrependUint16(_)
def PrependUint32Slot(o, x, d): PrependSlot(o, x, d): PrependUint32(_)
def PrependUint64Slot(o, x, d): PrependSlot(o, x, d): PrependUint64(_)
def PrependInt8Slot(o, x, d): PrependSlot(o, x, d): PrependInt8(_)
def PrependInt16Slot(o, x, d): PrependSlot(o, x, d): PrependInt16(_)
def PrependInt32Slot(o, x, d): PrependSlot(o, x, d): PrependInt32(_)
def PrependInt64Slot(o, x, d): PrependSlot(o, x, d): PrependInt64(_)
def PrependFloat32Slot(o, x, d): PrependSlot(o, x, d): PrependFloat32(_)
def PrependFloat64Slot(o, x, d): PrependSlot(o, x, d): PrependFloat64(_)
def PrependUOffsetTRelativeSlot(o:int, x:offset):
if x.o:
PrependUOffsetTRelative(x)
Slot(o)
def PrependStructSlot(v:int, x:offset):
if x.o:
// Structs are always stored inline, so need to be created right
// where they are used. You'll get this error if you created it
// elsewhere.
assert x.o == head
Slot(v)