flatbuffers/ts/builder.ts

628 lines
19 KiB
TypeScript

import { ByteBuffer } from "./byte-buffer"
import { SIZEOF_SHORT, SIZE_PREFIX_LENGTH, SIZEOF_INT, FILE_IDENTIFIER_LENGTH } from "./constants"
import { Offset, IGeneratedObject } from "./types"
import { Long } from "./long"
export class Builder {
private bb: ByteBuffer
/** Remaining space in the ByteBuffer. */
private space: number
/** Minimum alignment encountered so far. */
private minalign = 1
/** The vtable for the current table. */
private vtable: number[] | null = null
/** The amount of fields we're actually using. */
private vtable_in_use = 0
/** Whether we are currently serializing a table. */
private isNested = false;
/** Starting offset of the current struct/table. */
private object_start = 0
/** List of offsets of all vtables. */
private vtables: number[] = []
/** For the current vector being built. */
private vector_num_elems = 0
/** False omits default values from the serialized data */
private force_defaults = false;
private string_maps: Map<string | Uint8Array, number> | null = null;
/**
* Create a FlatBufferBuilder.
*/
constructor(opt_initial_size?: number) {
let initial_size: number;
if (!opt_initial_size) {
initial_size = 1024;
} else {
initial_size = opt_initial_size;
}
/**
* @type {ByteBuffer}
* @private
*/
this.bb = ByteBuffer.allocate(initial_size);
this.space = initial_size;
}
clear(): void {
this.bb.clear();
this.space = this.bb.capacity();
this.minalign = 1;
this.vtable = null;
this.vtable_in_use = 0;
this.isNested = false;
this.object_start = 0;
this.vtables = [];
this.vector_num_elems = 0;
this.force_defaults = false;
this.string_maps = null;
}
/**
* In order to save space, fields that are set to their default value
* don't get serialized into the buffer. Forcing defaults provides a
* way to manually disable this optimization.
*
* @param forceDefaults true always serializes default values
*/
forceDefaults(forceDefaults: boolean): void {
this.force_defaults = forceDefaults;
}
/**
* Get the ByteBuffer representing the FlatBuffer. Only call this after you've
* called finish(). The actual data starts at the ByteBuffer's current position,
* not necessarily at 0.
*/
dataBuffer(): ByteBuffer {
return this.bb;
}
/**
* Get the bytes representing the FlatBuffer. Only call this after you've
* called finish().
*/
asUint8Array(): Uint8Array {
return this.bb.bytes().subarray(this.bb.position(), this.bb.position() + this.offset());
}
/**
* Prepare to write an element of `size` after `additional_bytes` have been
* written, e.g. if you write a string, you need to align such the int length
* field is aligned to 4 bytes, and the string data follows it directly. If all
* you need to do is alignment, `additional_bytes` will be 0.
*
* @param size This is the of the new element to write
* @param additional_bytes The padding size
*/
prep(size: number, additional_bytes: number): void {
// Track the biggest thing we've ever aligned to.
if (size > this.minalign) {
this.minalign = size;
}
// Find the amount of alignment needed such that `size` is properly
// aligned after `additional_bytes`
const align_size = ((~(this.bb.capacity() - this.space + additional_bytes)) + 1) & (size - 1);
// Reallocate the buffer if needed.
while (this.space < align_size + size + additional_bytes) {
const old_buf_size = this.bb.capacity();
this.bb = Builder.growByteBuffer(this.bb);
this.space += this.bb.capacity() - old_buf_size;
}
this.pad(align_size);
}
pad(byte_size: number): void {
for (let i = 0; i < byte_size; i++) {
this.bb.writeInt8(--this.space, 0);
}
}
writeInt8(value: number): void {
this.bb.writeInt8(this.space -= 1, value);
}
writeInt16(value: number): void {
this.bb.writeInt16(this.space -= 2, value);
}
writeInt32(value: number): void {
this.bb.writeInt32(this.space -= 4, value);
}
writeInt64(value: Long): void {
this.bb.writeInt64(this.space -= 8, value);
}
writeFloat32(value: number): void {
this.bb.writeFloat32(this.space -= 4, value);
}
writeFloat64(value: number): void {
this.bb.writeFloat64(this.space -= 8, value);
}
/**
* Add an `int8` to the buffer, properly aligned, and grows the buffer (if necessary).
* @param value The `int8` to add the the buffer.
*/
addInt8(value: number): void {
this.prep(1, 0);
this.writeInt8(value);
}
/**
* Add an `int16` to the buffer, properly aligned, and grows the buffer (if necessary).
* @param value The `int16` to add the the buffer.
*/
addInt16(value: number): void {
this.prep(2, 0);
this.writeInt16(value);
}
/**
* Add an `int32` to the buffer, properly aligned, and grows the buffer (if necessary).
* @param value The `int32` to add the the buffer.
*/
addInt32(value: number): void {
this.prep(4, 0);
this.writeInt32(value);
}
/**
* Add an `int64` to the buffer, properly aligned, and grows the buffer (if necessary).
* @param value The `int64` to add the the buffer.
*/
addInt64(value: Long): void {
this.prep(8, 0);
this.writeInt64(value);
}
/**
* Add a `float32` to the buffer, properly aligned, and grows the buffer (if necessary).
* @param value The `float32` to add the the buffer.
*/
addFloat32(value: number): void {
this.prep(4, 0);
this.writeFloat32(value);
}
/**
* Add a `float64` to the buffer, properly aligned, and grows the buffer (if necessary).
* @param value The `float64` to add the the buffer.
*/
addFloat64(value: number): void {
this.prep(8, 0);
this.writeFloat64(value);
}
addFieldInt8(voffset: number, value: number, defaultValue: number): void {
if (this.force_defaults || value != defaultValue) {
this.addInt8(value);
this.slot(voffset);
}
}
addFieldInt16(voffset: number, value: number, defaultValue: number): void {
if (this.force_defaults || value != defaultValue) {
this.addInt16(value);
this.slot(voffset);
}
}
addFieldInt32(voffset: number, value: number, defaultValue: number): void {
if (this.force_defaults || value != defaultValue) {
this.addInt32(value);
this.slot(voffset);
}
}
addFieldInt64(voffset: number, value: Long, defaultValue: Long): void {
if (this.force_defaults || !value.equals(defaultValue)) {
this.addInt64(value);
this.slot(voffset);
}
}
addFieldFloat32(voffset: number, value: number, defaultValue: number): void {
if (this.force_defaults || value != defaultValue) {
this.addFloat32(value);
this.slot(voffset);
}
}
addFieldFloat64(voffset: number, value: number, defaultValue: number): void {
if (this.force_defaults || value != defaultValue) {
this.addFloat64(value);
this.slot(voffset);
}
}
addFieldOffset(voffset: number, value: Offset, defaultValue: Offset): void {
if (this.force_defaults || value != defaultValue) {
this.addOffset(value);
this.slot(voffset);
}
}
/**
* Structs are stored inline, so nothing additional is being added. `d` is always 0.
*/
addFieldStruct(voffset: number, value: Offset, defaultValue: Offset): void {
if (value != defaultValue) {
this.nested(value);
this.slot(voffset);
}
}
/**
* Structures are always stored inline, they need to be created right
* where they're used. You'll get this assertion failure if you
* created it elsewhere.
*/
nested(obj: Offset): void {
if (obj != this.offset()) {
throw new Error('FlatBuffers: struct must be serialized inline.');
}
}
/**
* Should not be creating any other object, string or vector
* while an object is being constructed
*/
notNested(): void {
if (this.isNested) {
throw new Error('FlatBuffers: object serialization must not be nested.');
}
}
/**
* Set the current vtable at `voffset` to the current location in the buffer.
*/
slot(voffset: number): void {
if (this.vtable !== null)
this.vtable[voffset] = this.offset();
}
/**
* @returns Offset relative to the end of the buffer.
*/
offset(): Offset {
return this.bb.capacity() - this.space;
}
/**
* Doubles the size of the backing ByteBuffer and copies the old data towards
* the end of the new buffer (since we build the buffer backwards).
*
* @param bb The current buffer with the existing data
* @returns A new byte buffer with the old data copied
* to it. The data is located at the end of the buffer.
*
* uint8Array.set() formally takes {Array<number>|ArrayBufferView}, so to pass
* it a uint8Array we need to suppress the type check:
* @suppress {checkTypes}
*/
static growByteBuffer(bb: ByteBuffer): ByteBuffer {
const old_buf_size = bb.capacity();
// Ensure we don't grow beyond what fits in an int.
if (old_buf_size & 0xC0000000) {
throw new Error('FlatBuffers: cannot grow buffer beyond 2 gigabytes.');
}
const new_buf_size = old_buf_size << 1;
const nbb = ByteBuffer.allocate(new_buf_size);
nbb.setPosition(new_buf_size - old_buf_size);
nbb.bytes().set(bb.bytes(), new_buf_size - old_buf_size);
return nbb;
}
/**
* Adds on offset, relative to where it will be written.
*
* @param offset The offset to add.
*/
addOffset(offset: Offset): void {
this.prep(SIZEOF_INT, 0); // Ensure alignment is already done.
this.writeInt32(this.offset() - offset + SIZEOF_INT);
}
/**
* Start encoding a new object in the buffer. Users will not usually need to
* call this directly. The FlatBuffers compiler will generate helper methods
* that call this method internally.
*/
startObject(numfields: number): void {
this.notNested();
if (this.vtable == null) {
this.vtable = [];
}
this.vtable_in_use = numfields;
for (let i = 0; i < numfields; i++) {
this.vtable[i] = 0; // This will push additional elements as needed
}
this.isNested = true;
this.object_start = this.offset();
}
/**
* Finish off writing the object that is under construction.
*
* @returns The offset to the object inside `dataBuffer`
*/
endObject(): Offset {
if (this.vtable == null || !this.isNested) {
throw new Error('FlatBuffers: endObject called without startObject');
}
this.addInt32(0);
const vtableloc = this.offset();
// Trim trailing zeroes.
let i = this.vtable_in_use - 1;
// eslint-disable-next-line no-empty
for (; i >= 0 && this.vtable[i] == 0; i--) {}
const trimmed_size = i + 1;
// Write out the current vtable.
for (; i >= 0; i--) {
// Offset relative to the start of the table.
this.addInt16(this.vtable[i] != 0 ? vtableloc - this.vtable[i] : 0);
}
const standard_fields = 2; // The fields below:
this.addInt16(vtableloc - this.object_start);
const len = (trimmed_size + standard_fields) * SIZEOF_SHORT;
this.addInt16(len);
// Search for an existing vtable that matches the current one.
let existing_vtable = 0;
const vt1 = this.space;
outer_loop:
for (i = 0; i < this.vtables.length; i++) {
const vt2 = this.bb.capacity() - this.vtables[i];
if (len == this.bb.readInt16(vt2)) {
for (let j = SIZEOF_SHORT; j < len; j += SIZEOF_SHORT) {
if (this.bb.readInt16(vt1 + j) != this.bb.readInt16(vt2 + j)) {
continue outer_loop;
}
}
existing_vtable = this.vtables[i];
break;
}
}
if (existing_vtable) {
// Found a match:
// Remove the current vtable.
this.space = this.bb.capacity() - vtableloc;
// Point table to existing vtable.
this.bb.writeInt32(this.space, existing_vtable - vtableloc);
} else {
// No match:
// Add the location of the current vtable to the list of vtables.
this.vtables.push(this.offset());
// Point table to current vtable.
this.bb.writeInt32(this.bb.capacity() - vtableloc, this.offset() - vtableloc);
}
this.isNested = false;
return vtableloc as Offset;
}
/**
* Finalize a buffer, poiting to the given `root_table`.
*/
finish(root_table: Offset, opt_file_identifier?: string, opt_size_prefix?: boolean): void {
const size_prefix = opt_size_prefix ? SIZE_PREFIX_LENGTH : 0;
if (opt_file_identifier) {
const file_identifier = opt_file_identifier;
this.prep(this.minalign, SIZEOF_INT +
FILE_IDENTIFIER_LENGTH + size_prefix);
if (file_identifier.length != FILE_IDENTIFIER_LENGTH) {
throw new Error('FlatBuffers: file identifier must be length ' +
FILE_IDENTIFIER_LENGTH);
}
for (let i = FILE_IDENTIFIER_LENGTH - 1; i >= 0; i--) {
this.writeInt8(file_identifier.charCodeAt(i));
}
}
this.prep(this.minalign, SIZEOF_INT + size_prefix);
this.addOffset(root_table);
if (size_prefix) {
this.addInt32(this.bb.capacity() - this.space);
}
this.bb.setPosition(this.space);
}
/**
* Finalize a size prefixed buffer, pointing to the given `root_table`.
*/
finishSizePrefixed(this: Builder, root_table: Offset, opt_file_identifier?: string): void {
this.finish(root_table, opt_file_identifier, true);
}
/**
* This checks a required field has been set in a given table that has
* just been constructed.
*/
requiredField(table: Offset, field: number): void {
const table_start = this.bb.capacity() - table;
const vtable_start = table_start - this.bb.readInt32(table_start);
const ok = this.bb.readInt16(vtable_start + field) != 0;
// If this fails, the caller will show what field needs to be set.
if (!ok) {
throw new Error('FlatBuffers: field ' + field + ' must be set');
}
}
/**
* Start a new array/vector of objects. Users usually will not call
* this directly. The FlatBuffers compiler will create a start/end
* method for vector types in generated code.
*
* @param elem_size The size of each element in the array
* @param num_elems The number of elements in the array
* @param alignment The alignment of the array
*/
startVector(elem_size: number, num_elems: number, alignment: number): void {
this.notNested();
this.vector_num_elems = num_elems;
this.prep(SIZEOF_INT, elem_size * num_elems);
this.prep(alignment, elem_size * num_elems); // Just in case alignment > int.
}
/**
* Finish off the creation of an array and all its elements. The array must be
* created with `startVector`.
*
* @returns The offset at which the newly created array
* starts.
*/
endVector(): Offset {
this.writeInt32(this.vector_num_elems);
return this.offset();
}
/**
* Encode the string `s` in the buffer using UTF-8. If the string passed has
* already been seen, we return the offset of the already written string
*
* @param s The string to encode
* @return The offset in the buffer where the encoded string starts
*/
createSharedString(s: string | Uint8Array): Offset {
if (!s) { return 0 }
if (!this.string_maps) {
this.string_maps = new Map();
}
if (this.string_maps.has(s)) {
return this.string_maps.get(s) as Offset
}
const offset = this.createString(s)
this.string_maps.set(s, offset)
return offset
}
/**
* Encode the string `s` in the buffer using UTF-8. If a Uint8Array is passed
* instead of a string, it is assumed to contain valid UTF-8 encoded data.
*
* @param s The string to encode
* @return The offset in the buffer where the encoded string starts
*/
createString(s: string | Uint8Array): Offset {
if (!s) { return 0 }
let utf8: string | Uint8Array | number[];
if (s instanceof Uint8Array) {
utf8 = s;
} else {
utf8 = [];
let i = 0;
while (i < s.length) {
let codePoint;
// Decode UTF-16
const a = s.charCodeAt(i++);
if (a < 0xD800 || a >= 0xDC00) {
codePoint = a;
} else {
const b = s.charCodeAt(i++);
codePoint = (a << 10) + b + (0x10000 - (0xD800 << 10) - 0xDC00);
}
// Encode UTF-8
if (codePoint < 0x80) {
utf8.push(codePoint);
} else {
if (codePoint < 0x800) {
utf8.push(((codePoint >> 6) & 0x1F) | 0xC0);
} else {
if (codePoint < 0x10000) {
utf8.push(((codePoint >> 12) & 0x0F) | 0xE0);
} else {
utf8.push(
((codePoint >> 18) & 0x07) | 0xF0,
((codePoint >> 12) & 0x3F) | 0x80);
}
utf8.push(((codePoint >> 6) & 0x3F) | 0x80);
}
utf8.push((codePoint & 0x3F) | 0x80);
}
}
}
this.addInt8(0);
this.startVector(1, utf8.length, 1);
this.bb.setPosition(this.space -= utf8.length);
for (let i = 0, offset = this.space, bytes = this.bb.bytes(); i < utf8.length; i++) {
bytes[offset++] = utf8[i];
}
return this.endVector();
}
/**
* A helper function to avoid generated code depending on this file directly.
*/
createLong(low: number, high: number): Long {
return Long.create(low, high);
}
/**
* A helper function to pack an object
*
* @returns offset of obj
*/
createObjectOffset(obj: string | IGeneratedObject): Offset {
if(obj === null) {
return 0
}
if(typeof obj === 'string') {
return this.createString(obj);
} else {
return obj.pack(this);
}
}
/**
* A helper function to pack a list of object
*
* @returns list of offsets of each non null object
*/
createObjectOffsetList(list: string[]): Offset[] {
const ret = [];
for(let i = 0; i < list.length; ++i) {
const val = list[i];
if(val !== null) {
ret.push(this.createObjectOffset(val));
} else {
throw new Error(
'FlatBuffers: Argument for createObjectOffsetList cannot contain null.');
}
}
return ret;
}
createStructOffsetList(list: string[], startFunc: (builder: Builder, length: number) => void): Offset {
startFunc(this, list.length);
this.createObjectOffsetList(list);
return this.endVector();
}
}