flatbuffers/tests/go_test.go

1165 lines
29 KiB
Go

/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package main
import (
example "MyGame/Example" // refers to generated code
"bytes"
"flag"
"fmt"
flatbuffers "github.com/google/flatbuffers/go"
"io/ioutil"
"os"
"reflect"
"sort"
"testing"
)
var (
cppData, javaData, outData string
fuzz bool
fuzzFields, fuzzObjects int
)
func init() {
flag.StringVar(&cppData, "cpp_data", "",
"location of monsterdata_test.mon to verify against (required)")
flag.StringVar(&javaData, "java_data", "",
"location of monsterdata_java_wire.mon to verify against (optional)")
flag.StringVar(&outData, "out_data", "",
"location to write generated Go data")
flag.BoolVar(&fuzz, "fuzz", false, "perform fuzzing")
flag.IntVar(&fuzzFields, "fuzz_fields", 4, "fields per fuzzer object")
flag.IntVar(&fuzzObjects, "fuzz_objects", 10000,
"number of fuzzer objects (higher is slower and more thorough")
flag.Parse()
if cppData == "" {
fmt.Fprintf(os.Stderr, "cpp_data argument is required\n")
os.Exit(1)
}
}
// Store specific byte patterns in these variables for the fuzzer. These
// values are taken verbatim from the C++ function FuzzTest1.
var (
overflowingInt32Val = flatbuffers.GetInt32([]byte{0x83, 0x33, 0x33, 0x33})
overflowingInt64Val = flatbuffers.GetInt64([]byte{0x84, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44})
)
// TestAll runs all checks, failing if any errors occur.
func TestAll(t *testing.T) {
// Verify that the Go FlatBuffers runtime library generates the
// expected bytes (does not use any schema):
CheckByteLayout(t.Fatalf)
// Verify that using the generated Go code builds a buffer without
// returning errors:
generated, off := CheckGeneratedBuild(t.Fatalf)
// Verify that the buffer generated by Go code is readable by the
// generated Go code:
CheckReadBuffer(generated, off, t.Fatalf)
// Verify that the buffer generated by C++ code is readable by the
// generated Go code:
monsterDataCpp, err := ioutil.ReadFile(cppData)
if err != nil {
t.Fatal(err)
}
CheckReadBuffer(monsterDataCpp, 0, t.Fatalf)
// Verify that vtables are deduplicated when written:
CheckVtableDeduplication(t.Fatalf)
// Verify that the Go code used in FlatBuffers documentation passes
// some sanity checks:
CheckDocExample(generated, off, t.Fatalf)
// Check Builder.CreateByteVector
CheckCreateByteVector(t.Fatalf)
// If the filename of the FlatBuffers file generated by the Java test
// is given, check that Go code can read it, and that Go code
// generates an identical buffer when used to create the example data:
if javaData != "" {
monsterDataJava, err := ioutil.ReadFile(javaData)
if err != nil {
t.Fatal(err)
}
CheckReadBuffer(monsterDataJava, 0, t.Fatalf)
CheckByteEquality(generated[off:], monsterDataJava, t.Fatalf)
}
// Verify that various fuzzing scenarios produce a valid FlatBuffer.
if fuzz {
checkFuzz(fuzzFields, fuzzObjects, t.Fatalf)
}
// Write the generated buffer out to a file:
err = ioutil.WriteFile(outData, generated[off:], os.FileMode(0644))
if err != nil {
t.Fatal(err)
}
}
// CheckReadBuffer checks that the given buffer is evaluated correctly
// as the example Monster.
func CheckReadBuffer(buf []byte, offset flatbuffers.UOffsetT, fail func(string, ...interface{})) {
monster := example.GetRootAsMonster(buf, offset)
if got := monster.Hp(); 80 != got {
fail(FailString("hp", 80, got))
}
// default
if got := monster.Mana(); 150 != got {
fail(FailString("mana", 150, got))
}
if got := monster.Name(); "MyMonster" != got {
fail(FailString("name", "MyMonster", got))
}
// initialize a Vec3 from Pos()
vec := new(example.Vec3)
vec = monster.Pos(vec)
if vec == nil {
fail("vec3 initialization failed")
}
// check that new allocs equal given ones:
vec2 := monster.Pos(nil)
if !reflect.DeepEqual(vec, vec2) {
fail("fresh allocation failed")
}
// verify the properties of the Vec3
if got := vec.X(); float32(1.0) != got {
fail(FailString("Pos.X", float32(1.0), got))
}
if got := vec.Y(); float32(2.0) != got {
fail(FailString("Pos.Y", float32(2.0), got))
}
if got := vec.Z(); float32(3.0) != got {
fail(FailString("Pos.Z", float32(3.0), got))
}
if got := vec.Test1(); float64(3.0) != got {
fail(FailString("Pos.Test1", float64(3.0), got))
}
if got := vec.Test2(); int8(2) != got {
fail(FailString("Pos.Test2", int8(2), got))
}
// initialize a Test from Test3(...)
t := new(example.Test)
t = vec.Test3(t)
if t == nil {
fail("vec.Test3(&t) failed")
}
// check that new allocs equal given ones:
t2 := vec.Test3(nil)
if !reflect.DeepEqual(t, t2) {
fail("fresh allocation failed")
}
// verify the properties of the Test
if got := t.A(); int16(5) != got {
fail(FailString("t.A()", int16(5), got))
}
if got := t.B(); int8(6) != got {
fail(FailString("t.B()", int8(6), got))
}
if got := monster.TestType(); example.AnyMonster != got {
fail(FailString("monster.TestType()", example.AnyMonster, got))
}
if unionType := monster.TestType(); unionType != example.AnyMonster {
fail("monster.TestType()")
}
// initialize a Table from a union field Test(...)
var table2 flatbuffers.Table
if ok := monster.Test(&table2); !ok {
fail("monster.Test(&monster2) failed")
}
// initialize a Monster from the Table from the union
var monster2 example.Monster
monster2.Init(table2.Bytes, table2.Pos)
if got := monster2.Name(); "Fred" != got {
fail(FailString("monster2.Name()", "Fred", got))
}
if got := monster.InventoryLength(); 5 != got {
fail(FailString("monster.InventoryLength", 5, got))
}
invsum := 0
l := monster.InventoryLength()
for i := 0; i < l; i++ {
v := monster.Inventory(i)
invsum += int(v)
}
if invsum != 10 {
fail(FailString("monster inventory sum", 10, invsum))
}
if got := monster.Test4Length(); 2 != got {
fail(FailString("monster.Test4Length()", 2, got))
}
var test0 example.Test
ok := monster.Test4(&test0, 0)
if !ok {
fail(FailString("monster.Test4(&test0, 0)", true, ok))
}
var test1 example.Test
ok = monster.Test4(&test1, 1)
if !ok {
fail(FailString("monster.Test4(&test1, 1)", true, ok))
}
// the position of test0 and test1 are swapped in monsterdata_java_wire
// and monsterdata_test_wire, so ignore ordering
v0 := test0.A()
v1 := test0.B()
v2 := test1.A()
v3 := test1.B()
sum := int(v0) + int(v1) + int(v2) + int(v3)
if 100 != sum {
fail(FailString("test0 and test1 sum", 100, sum))
}
if got := monster.TestarrayofstringLength(); 2 != got {
fail(FailString("Testarrayofstring length", 2, got))
}
if got := monster.Testarrayofstring(0); "test1" != got {
fail(FailString("Testarrayofstring(0)", "test1", got))
}
if got := monster.Testarrayofstring(1); "test2" != got {
fail(FailString("Testarrayofstring(1)", "test2", got))
}
}
// Low level stress/fuzz test: serialize/deserialize a variety of
// different kinds of data in different combinations
func checkFuzz(fuzzFields, fuzzObjects int, fail func(string, ...interface{})) {
// Values we're testing against: chosen to ensure no bits get chopped
// off anywhere, and also be different from eachother.
boolVal := true
int8Val := int8(-127) // 0x81
uint8Val := uint8(0xFF)
int16Val := int16(-32222) // 0x8222
uint16Val := uint16(0xFEEE)
int32Val := int32(overflowingInt32Val)
uint32Val := uint32(0xFDDDDDDD)
int64Val := int64(overflowingInt64Val)
uint64Val := uint64(0xFCCCCCCCCCCCCCCC)
float32Val := float32(3.14159)
float64Val := float64(3.14159265359)
testValuesMax := 11 // hardcoded to the number of scalar types
builder := flatbuffers.NewBuilder(0)
l := NewLCG()
objects := make([]flatbuffers.UOffsetT, fuzzObjects)
// Generate fuzzObjects random objects each consisting of
// fuzzFields fields, each of a random type.
for i := 0; i < fuzzObjects; i++ {
builder.StartObject(fuzzFields)
for f := 0; f < fuzzFields; f++ {
choice := l.Next() % uint32(testValuesMax)
switch choice {
case 0:
builder.PrependBoolSlot(int(f), boolVal, false)
case 1:
builder.PrependInt8Slot(int(f), int8Val, 0)
case 2:
builder.PrependUint8Slot(int(f), uint8Val, 0)
case 3:
builder.PrependInt16Slot(int(f), int16Val, 0)
case 4:
builder.PrependUint16Slot(int(f), uint16Val, 0)
case 5:
builder.PrependInt32Slot(int(f), int32Val, 0)
case 6:
builder.PrependUint32Slot(int(f), uint32Val, 0)
case 7:
builder.PrependInt64Slot(int(f), int64Val, 0)
case 8:
builder.PrependUint64Slot(int(f), uint64Val, 0)
case 9:
builder.PrependFloat32Slot(int(f), float32Val, 0)
case 10:
builder.PrependFloat64Slot(int(f), float64Val, 0)
}
}
off := builder.EndObject()
// store the offset from the end of the builder buffer,
// since it will keep growing:
objects[i] = off
}
// Do some bookkeeping to generate stats on fuzzes:
stats := map[string]int{}
check := func(desc string, want, got interface{}) {
stats[desc]++
if want != got {
fail("%s want %v got %v", desc, want, got)
}
}
l = NewLCG() // Reset.
// Test that all objects we generated are readable and return the
// expected values. We generate random objects in the same order
// so this is deterministic.
for i := 0; i < fuzzObjects; i++ {
table := &flatbuffers.Table{
Bytes: builder.Bytes,
Pos: flatbuffers.UOffsetT(len(builder.Bytes)) - objects[i],
}
for j := 0; j < fuzzFields; j++ {
f := flatbuffers.VOffsetT((flatbuffers.VtableMetadataFields + j) * flatbuffers.SizeVOffsetT)
choice := int(l.Next()) % testValuesMax
switch choice {
case 0:
check("bool", boolVal, table.GetBoolSlot(f, false))
case 1:
check("int8", int8Val, table.GetInt8Slot(f, 0))
case 2:
check("uint8", uint8Val, table.GetUint8Slot(f, 0))
case 3:
check("int16", int16Val, table.GetInt16Slot(f, 0))
case 4:
check("uint16", uint16Val, table.GetUint16Slot(f, 0))
case 5:
check("int32", int32Val, table.GetInt32Slot(f, 0))
case 6:
check("uint32", uint32Val, table.GetUint32Slot(f, 0))
case 7:
check("int64", int64Val, table.GetInt64Slot(f, 0))
case 8:
check("uint64", uint64Val, table.GetUint64Slot(f, 0))
case 9:
check("float32", float32Val, table.GetFloat32Slot(f, 0))
case 10:
check("float64", float64Val, table.GetFloat64Slot(f, 0))
}
}
}
// If enough checks were made, verify that all scalar types were used:
if fuzzFields*fuzzObjects >= testValuesMax {
if len(stats) != testValuesMax {
fail("fuzzing failed to test all scalar types")
}
}
// Print some counts, if needed:
if testing.Verbose() {
if fuzzFields == 0 || fuzzObjects == 0 {
fmt.Printf("fuzz\tfields: %d\tobjects: %d\t[none]\t%d\n",
fuzzFields, fuzzObjects, 0)
} else {
keys := make([]string, 0, len(stats))
for k := range stats {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
fmt.Printf("fuzz\tfields: %d\tobjects: %d\t%s\t%d\n",
fuzzFields, fuzzObjects, k, stats[k])
}
}
}
return
}
// FailString makes a message for when expectations differ from reality.
func FailString(name string, want, got interface{}) string {
return fmt.Sprintf("bad %s: want %#v got %#v", name, want, got)
}
// CheckByteLayout verifies the bytes of a Builder in various scenarios.
func CheckByteLayout(fail func(string, ...interface{})) {
var b *flatbuffers.Builder
var i int
check := func(want []byte) {
i++
got := b.Bytes[b.Head():]
if !bytes.Equal(want, got) {
fail("case %d: want\n%v\nbut got\n%v\n", i, want, got)
}
}
// test 1: numbers
b = flatbuffers.NewBuilder(0)
check([]byte{})
b.PrependBool(true)
check([]byte{1})
b.PrependInt8(-127)
check([]byte{129, 1})
b.PrependUint8(255)
check([]byte{255, 129, 1})
b.PrependInt16(-32222)
check([]byte{0x22, 0x82, 0, 255, 129, 1}) // first pad
b.PrependUint16(0xFEEE)
check([]byte{0xEE, 0xFE, 0x22, 0x82, 0, 255, 129, 1}) // no pad this time
b.PrependInt32(-53687092)
check([]byte{204, 204, 204, 252, 0xEE, 0xFE, 0x22, 0x82, 0, 255, 129, 1})
b.PrependUint32(0x98765432)
check([]byte{0x32, 0x54, 0x76, 0x98, 204, 204, 204, 252, 0xEE, 0xFE, 0x22, 0x82, 0, 255, 129, 1})
// test 1b: numbers 2
b = flatbuffers.NewBuilder(0)
b.PrependUint64(0x1122334455667788)
check([]byte{0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11})
// test 2: 1xbyte vector
b = flatbuffers.NewBuilder(0)
check([]byte{})
b.StartVector(flatbuffers.SizeByte, 1, 1)
check([]byte{0, 0, 0}) // align to 4bytes
b.PrependByte(1)
check([]byte{1, 0, 0, 0})
b.EndVector(1)
check([]byte{1, 0, 0, 0, 1, 0, 0, 0}) // padding
// test 3: 2xbyte vector
b = flatbuffers.NewBuilder(0)
b.StartVector(flatbuffers.SizeByte, 2, 1)
check([]byte{0, 0}) // align to 4bytes
b.PrependByte(1)
check([]byte{1, 0, 0})
b.PrependByte(2)
check([]byte{2, 1, 0, 0})
b.EndVector(2)
check([]byte{2, 0, 0, 0, 2, 1, 0, 0}) // padding
// test 4: 1xuint16 vector
b = flatbuffers.NewBuilder(0)
b.StartVector(flatbuffers.SizeUint16, 1, 1)
check([]byte{0, 0}) // align to 4bytes
b.PrependUint16(1)
check([]byte{1, 0, 0, 0})
b.EndVector(1)
check([]byte{1, 0, 0, 0, 1, 0, 0, 0}) // padding
// test 5: 2xuint16 vector
b = flatbuffers.NewBuilder(0)
b.StartVector(flatbuffers.SizeUint16, 2, 1)
check([]byte{}) // align to 4bytes
b.PrependUint16(0xABCD)
check([]byte{0xCD, 0xAB})
b.PrependUint16(0xDCBA)
check([]byte{0xBA, 0xDC, 0xCD, 0xAB})
b.EndVector(2)
check([]byte{2, 0, 0, 0, 0xBA, 0xDC, 0xCD, 0xAB})
// test 6: CreateString
b = flatbuffers.NewBuilder(0)
b.CreateString("foo")
check([]byte{3, 0, 0, 0, 'f', 'o', 'o', 0}) // 0-terminated, no pad
b.CreateString("moop")
check([]byte{4, 0, 0, 0, 'm', 'o', 'o', 'p', 0, 0, 0, 0, // 0-terminated, 3-byte pad
3, 0, 0, 0, 'f', 'o', 'o', 0})
// test 7: empty vtable
b = flatbuffers.NewBuilder(0)
b.StartObject(0)
check([]byte{})
b.EndObject()
check([]byte{4, 0, 4, 0, 4, 0, 0, 0})
// test 8: vtable with one true bool
b = flatbuffers.NewBuilder(0)
check([]byte{})
b.StartObject(1)
check([]byte{})
b.PrependBoolSlot(0, true, false)
b.EndObject()
check([]byte{
6, 0, // vtable bytes
8, 0, // length of object including vtable offset
7, 0, // start of bool value
6, 0, 0, 0, // offset for start of vtable (int32)
0, 0, 0, // padded to 4 bytes
1, // bool value
})
// test 9: vtable with one default bool
b = flatbuffers.NewBuilder(0)
check([]byte{})
b.StartObject(1)
check([]byte{})
b.PrependBoolSlot(0, false, false)
b.EndObject()
check([]byte{
6, 0, // vtable bytes
4, 0, // end of object from here
0, 0, // entry 1 is zero
6, 0, 0, 0, // offset for start of vtable (int32)
})
// test 10: vtable with one int16
b = flatbuffers.NewBuilder(0)
b.StartObject(1)
b.PrependInt16Slot(0, 0x789A, 0)
b.EndObject()
check([]byte{
6, 0, // vtable bytes
8, 0, // end of object from here
6, 0, // offset to value
6, 0, 0, 0, // offset for start of vtable (int32)
0, 0, // padding to 4 bytes
0x9A, 0x78,
})
// test 11: vtable with two int16
b = flatbuffers.NewBuilder(0)
b.StartObject(2)
b.PrependInt16Slot(0, 0x3456, 0)
b.PrependInt16Slot(1, 0x789A, 0)
b.EndObject()
check([]byte{
8, 0, // vtable bytes
8, 0, // end of object from here
6, 0, // offset to value 0
4, 0, // offset to value 1
8, 0, 0, 0, // offset for start of vtable (int32)
0x9A, 0x78, // value 1
0x56, 0x34, // value 0
})
// test 12: vtable with int16 and bool
b = flatbuffers.NewBuilder(0)
b.StartObject(2)
b.PrependInt16Slot(0, 0x3456, 0)
b.PrependBoolSlot(1, true, false)
b.EndObject()
check([]byte{
8, 0, // vtable bytes
8, 0, // end of object from here
6, 0, // offset to value 0
5, 0, // offset to value 1
8, 0, 0, 0, // offset for start of vtable (int32)
0, // padding
1, // value 1
0x56, 0x34, // value 0
})
// test 12: vtable with empty vector
b = flatbuffers.NewBuilder(0)
b.StartVector(flatbuffers.SizeByte, 0, 1)
vecend := b.EndVector(0)
b.StartObject(1)
b.PrependUOffsetTSlot(0, vecend, 0)
b.EndObject()
check([]byte{
6, 0, // vtable bytes
8, 0,
4, 0, // offset to vector offset
6, 0, 0, 0, // offset for start of vtable (int32)
4, 0, 0, 0,
0, 0, 0, 0, // length of vector (not in struct)
})
// test 12b: vtable with empty vector of byte and some scalars
b = flatbuffers.NewBuilder(0)
b.StartVector(flatbuffers.SizeByte, 0, 1)
vecend = b.EndVector(0)
b.StartObject(2)
b.PrependInt16Slot(0, 55, 0)
b.PrependUOffsetTSlot(1, vecend, 0)
b.EndObject()
check([]byte{
8, 0, // vtable bytes
12, 0,
10, 0, // offset to value 0
4, 0, // offset to vector offset
8, 0, 0, 0, // vtable loc
8, 0, 0, 0, // value 1
0, 0, 55, 0, // value 0
0, 0, 0, 0, // length of vector (not in struct)
})
// test 13: vtable with 1 int16 and 2-vector of int16
b = flatbuffers.NewBuilder(0)
b.StartVector(flatbuffers.SizeInt16, 2, 1)
b.PrependInt16(0x1234)
b.PrependInt16(0x5678)
vecend = b.EndVector(2)
b.StartObject(2)
b.PrependUOffsetTSlot(1, vecend, 0)
b.PrependInt16Slot(0, 55, 0)
b.EndObject()
check([]byte{
8, 0, // vtable bytes
12, 0, // length of object
6, 0, // start of value 0 from end of vtable
8, 0, // start of value 1 from end of buffer
8, 0, 0, 0, // offset for start of vtable (int32)
0, 0, // padding
55, 0, // value 0
4, 0, 0, 0, // vector position from here
2, 0, 0, 0, // length of vector (uint32)
0x78, 0x56, // vector value 1
0x34, 0x12, // vector value 0
})
// test 14: vtable with 1 struct of 1 int8, 1 int16, 1 int32
b = flatbuffers.NewBuilder(0)
b.StartObject(1)
b.Prep(4+4+4, 0)
b.PrependInt8(55)
b.Pad(3)
b.PrependInt16(0x1234)
b.Pad(2)
b.PrependInt32(0x12345678)
structStart := b.Offset()
b.PrependStructSlot(0, structStart, 0)
b.EndObject()
check([]byte{
6, 0, // vtable bytes
16, 0, // end of object from here
4, 0, // start of struct from here
6, 0, 0, 0, // offset for start of vtable (int32)
0x78, 0x56, 0x34, 0x12, // value 2
0, 0, // padding
0x34, 0x12, // value 1
0, 0, 0, // padding
55, // value 0
})
// test 15: vtable with 1 vector of 2 struct of 2 int8
b = flatbuffers.NewBuilder(0)
b.StartVector(flatbuffers.SizeInt8*2, 2, 1)
b.PrependInt8(33)
b.PrependInt8(44)
b.PrependInt8(55)
b.PrependInt8(66)
vecend = b.EndVector(2)
b.StartObject(1)
b.PrependUOffsetTSlot(0, vecend, 0)
b.EndObject()
check([]byte{
6, 0, // vtable bytes
8, 0,
4, 0, // offset of vector offset
6, 0, 0, 0, // offset for start of vtable (int32)
4, 0, 0, 0, // vector start offset
2, 0, 0, 0, // vector length
66, // vector value 1,1
55, // vector value 1,0
44, // vector value 0,1
33, // vector value 0,0
})
// test 16: table with some elements
b = flatbuffers.NewBuilder(0)
b.StartObject(2)
b.PrependInt8Slot(0, 33, 0)
b.PrependInt16Slot(1, 66, 0)
off := b.EndObject()
b.Finish(off)
check([]byte{
12, 0, 0, 0, // root of table: points to vtable offset
8, 0, // vtable bytes
8, 0, // end of object from here
7, 0, // start of value 0
4, 0, // start of value 1
8, 0, 0, 0, // offset for start of vtable (int32)
66, 0, // value 1
0, // padding
33, // value 0
})
// test 17: one unfinished table and one finished table
b = flatbuffers.NewBuilder(0)
b.StartObject(2)
b.PrependInt8Slot(0, 33, 0)
b.PrependInt8Slot(1, 44, 0)
off = b.EndObject()
b.Finish(off)
b.StartObject(3)
b.PrependInt8Slot(0, 55, 0)
b.PrependInt8Slot(1, 66, 0)
b.PrependInt8Slot(2, 77, 0)
off = b.EndObject()
b.Finish(off)
check([]byte{
16, 0, 0, 0, // root of table: points to object
0, 0, // padding
10, 0, // vtable bytes
8, 0, // size of object
7, 0, // start of value 0
6, 0, // start of value 1
5, 0, // start of value 2
10, 0, 0, 0, // offset for start of vtable (int32)
0, // padding
77, // value 2
66, // value 1
55, // value 0
12, 0, 0, 0, // root of table: points to object
8, 0, // vtable bytes
8, 0, // size of object
7, 0, // start of value 0
6, 0, // start of value 1
8, 0, 0, 0, // offset for start of vtable (int32)
0, 0, // padding
44, // value 1
33, // value 0
})
// test 18: a bunch of bools
b = flatbuffers.NewBuilder(0)
b.StartObject(8)
b.PrependBoolSlot(0, true, false)
b.PrependBoolSlot(1, true, false)
b.PrependBoolSlot(2, true, false)
b.PrependBoolSlot(3, true, false)
b.PrependBoolSlot(4, true, false)
b.PrependBoolSlot(5, true, false)
b.PrependBoolSlot(6, true, false)
b.PrependBoolSlot(7, true, false)
off = b.EndObject()
b.Finish(off)
check([]byte{
24, 0, 0, 0, // root of table: points to vtable offset
20, 0, // vtable bytes
12, 0, // size of object
11, 0, // start of value 0
10, 0, // start of value 1
9, 0, // start of value 2
8, 0, // start of value 3
7, 0, // start of value 4
6, 0, // start of value 5
5, 0, // start of value 6
4, 0, // start of value 7
20, 0, 0, 0, // vtable offset
1, // value 7
1, // value 6
1, // value 5
1, // value 4
1, // value 3
1, // value 2
1, // value 1
1, // value 0
})
// test 19: three bools
b = flatbuffers.NewBuilder(0)
b.StartObject(3)
b.PrependBoolSlot(0, true, false)
b.PrependBoolSlot(1, true, false)
b.PrependBoolSlot(2, true, false)
off = b.EndObject()
b.Finish(off)
check([]byte{
16, 0, 0, 0, // root of table: points to vtable offset
0, 0, // padding
10, 0, // vtable bytes
8, 0, // size of object
7, 0, // start of value 0
6, 0, // start of value 1
5, 0, // start of value 2
10, 0, 0, 0, // vtable offset from here
0, // padding
1, // value 2
1, // value 1
1, // value 0
})
// test 20: some floats
b = flatbuffers.NewBuilder(0)
b.StartObject(1)
b.PrependFloat32Slot(0, 1.0, 0.0)
off = b.EndObject()
check([]byte{
6, 0, // vtable bytes
8, 0, // size of object
4, 0, // start of value 0
6, 0, 0, 0, // vtable offset
0, 0, 128, 63, // value 0
})
}
// CheckManualBuild builds a Monster manually.
func CheckManualBuild(fail func(string, ...interface{})) ([]byte, flatbuffers.UOffsetT) {
b := flatbuffers.NewBuilder(0)
str := b.CreateString("MyMonster")
b.StartVector(1, 5, 1)
b.PrependByte(4)
b.PrependByte(3)
b.PrependByte(2)
b.PrependByte(1)
b.PrependByte(0)
inv := b.EndVector(5)
b.StartObject(13)
b.PrependInt16Slot(2, 20, 100)
mon2 := b.EndObject()
// Test4Vector
b.StartVector(4, 2, 1)
// Test 0
b.Prep(2, 4)
b.Pad(1)
b.PlaceInt8(20)
b.PlaceInt16(10)
// Test 1
b.Prep(2, 4)
b.Pad(1)
b.PlaceInt8(40)
b.PlaceInt16(30)
// end testvector
test4 := b.EndVector(2)
b.StartObject(13)
// a vec3
b.Prep(16, 32)
b.Pad(2)
b.Prep(2, 4)
b.Pad(1)
b.PlaceByte(6)
b.PlaceInt16(5)
b.Pad(1)
b.PlaceByte(4)
b.PlaceFloat64(3.0)
b.Pad(4)
b.PlaceFloat32(3.0)
b.PlaceFloat32(2.0)
b.PlaceFloat32(1.0)
vec3Loc := b.Offset()
// end vec3
b.PrependStructSlot(0, vec3Loc, 0) // vec3. noop
b.PrependInt16Slot(2, 80, 100) // hp
b.PrependUOffsetTSlot(3, str, 0)
b.PrependUOffsetTSlot(5, inv, 0) // inventory
b.PrependByteSlot(7, 1, 0)
b.PrependUOffsetTSlot(8, mon2, 0)
b.PrependUOffsetTSlot(9, test4, 0)
mon := b.EndObject()
b.Finish(mon)
return b.Bytes, b.Head()
}
// CheckGeneratedBuild uses generated code to build the example Monster.
func CheckGeneratedBuild(fail func(string, ...interface{})) ([]byte, flatbuffers.UOffsetT) {
b := flatbuffers.NewBuilder(0)
str := b.CreateString("MyMonster")
test1 := b.CreateString("test1")
test2 := b.CreateString("test2")
fred := b.CreateString("Fred")
example.MonsterStartInventoryVector(b, 5)
b.PrependByte(4)
b.PrependByte(3)
b.PrependByte(2)
b.PrependByte(1)
b.PrependByte(0)
inv := b.EndVector(5)
example.MonsterStart(b)
example.MonsterAddName(b, fred)
mon2 := example.MonsterEnd(b)
example.MonsterStartTest4Vector(b, 2)
example.CreateTest(b, 10, 20)
example.CreateTest(b, 30, 40)
test4 := b.EndVector(2)
example.MonsterStartTestarrayofstringVector(b, 2)
b.PrependUOffsetT(test2)
b.PrependUOffsetT(test1)
testArrayOfString := b.EndVector(2)
example.MonsterStart(b)
pos := example.CreateVec3(b, 1.0, 2.0, 3.0, 3.0, 2, 5, 6)
example.MonsterAddPos(b, pos)
example.MonsterAddHp(b, 80)
example.MonsterAddName(b, str)
example.MonsterAddInventory(b, inv)
example.MonsterAddTestType(b, 1)
example.MonsterAddTest(b, mon2)
example.MonsterAddTest4(b, test4)
example.MonsterAddTestarrayofstring(b, testArrayOfString)
mon := example.MonsterEnd(b)
b.Finish(mon)
return b.Bytes, b.Head()
}
// CheckVtableDeduplication verifies that vtables are deduplicated.
func CheckVtableDeduplication(fail func(string, ...interface{})) {
b := flatbuffers.NewBuilder(0)
b.StartObject(4)
b.PrependByteSlot(0, 0, 0)
b.PrependByteSlot(1, 11, 0)
b.PrependByteSlot(2, 22, 0)
b.PrependInt16Slot(3, 33, 0)
obj0 := b.EndObject()
b.StartObject(4)
b.PrependByteSlot(0, 0, 0)
b.PrependByteSlot(1, 44, 0)
b.PrependByteSlot(2, 55, 0)
b.PrependInt16Slot(3, 66, 0)
obj1 := b.EndObject()
b.StartObject(4)
b.PrependByteSlot(0, 0, 0)
b.PrependByteSlot(1, 77, 0)
b.PrependByteSlot(2, 88, 0)
b.PrependInt16Slot(3, 99, 0)
obj2 := b.EndObject()
got := b.Bytes[b.Head():]
want := []byte{
240, 255, 255, 255, // == -12. offset to dedupped vtable.
99, 0,
88,
77,
248, 255, 255, 255, // == -8. offset to dedupped vtable.
66, 0,
55,
44,
12, 0,
8, 0,
0, 0,
7, 0,
6, 0,
4, 0,
12, 0, 0, 0,
33, 0,
22,
11,
}
if !bytes.Equal(want, got) {
fail("testVtableDeduplication want:\n%d %v\nbut got:\n%d %v\n",
len(want), want, len(got), got)
}
table0 := &flatbuffers.Table{b.Bytes, flatbuffers.UOffsetT(len(b.Bytes)) - obj0}
table1 := &flatbuffers.Table{b.Bytes, flatbuffers.UOffsetT(len(b.Bytes)) - obj1}
table2 := &flatbuffers.Table{b.Bytes, flatbuffers.UOffsetT(len(b.Bytes)) - obj2}
testTable := func(tab *flatbuffers.Table, a flatbuffers.VOffsetT, b, c, d byte) {
// vtable size
if got := tab.GetVOffsetTSlot(0, 0); 12 != got {
fail("failed 0, 0: %d", got)
}
// object size
if got := tab.GetVOffsetTSlot(2, 0); 8 != got {
fail("failed 2, 0: %d", got)
}
// default value
if got := tab.GetVOffsetTSlot(4, 0); a != got {
fail("failed 4, 0: %d", got)
}
if got := tab.GetByteSlot(6, 0); b != got {
fail("failed 6, 0: %d", got)
}
if val := tab.GetByteSlot(8, 0); c != val {
fail("failed 8, 0: %d", got)
}
if got := tab.GetByteSlot(10, 0); d != got {
fail("failed 10, 0: %d", got)
}
}
testTable(table0, 0, 11, 22, 33)
testTable(table1, 0, 44, 55, 66)
testTable(table2, 0, 77, 88, 99)
}
// CheckDocExample checks that the code given in FlatBuffers documentation
// is syntactically correct.
func CheckDocExample(buf []byte, off flatbuffers.UOffsetT, fail func(string, ...interface{})) {
monster := example.GetRootAsMonster(buf, off)
_ = monster.Hp()
_ = monster.Pos(nil)
for i := 0; i < monster.InventoryLength(); i++ {
_ = monster.Inventory(i) // do something here
}
builder := flatbuffers.NewBuilder(0)
example.MonsterStartInventoryVector(builder, 5)
for i := 4; i >= 0; i-- {
builder.PrependByte(byte(i))
}
inv := builder.EndVector(5)
str := builder.CreateString("MyMonster")
example.MonsterStart(builder)
example.MonsterAddPos(builder, example.CreateVec3(builder, 1.0, 2.0, 3.0, 3.0, 4, 5, 6))
example.MonsterAddHp(builder, 80)
example.MonsterAddName(builder, str)
example.MonsterAddInventory(builder, inv)
example.MonsterAddTestType(builder, 1)
// example.MonsterAddTest(builder, mon2)
// example.MonsterAddTest4(builder, test4s)
_ = example.MonsterEnd(builder)
}
func CheckCreateByteVector(fail func(string, ...interface{})) {
raw := [30]byte{}
for i := 0; i < len(raw); i++ {
raw[i] = byte(i)
}
for size := 0; size < len(raw); size++ {
b1 := flatbuffers.NewBuilder(0)
b2 := flatbuffers.NewBuilder(0)
b1.StartVector(1, size, 1)
for i := size - 1; i >= 0; i-- {
b1.PrependByte(raw[i])
}
b1.EndVector(size)
b2.CreateByteVector(raw[:size])
CheckByteEquality(b1.Bytes, b2.Bytes, fail)
}
}
// Include simple random number generator to ensure results will be the
// same cross platform.
// http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
type LCG uint32
const InitialLCGSeed = 48271
func NewLCG() *LCG {
n := uint32(InitialLCGSeed)
l := LCG(n)
return &l
}
func (lcg *LCG) Reset() {
*lcg = InitialLCGSeed
}
func (lcg *LCG) Next() uint32 {
n := uint32((uint64(*lcg) * uint64(279470273)) % uint64(4294967291))
*lcg = LCG(n)
return n
}
// CheckByteEquality verifies that two byte buffers are the same.
func CheckByteEquality(a, b []byte, fail func(string, ...interface{})) {
if !bytes.Equal(a, b) {
fail("objects are not byte-wise equal")
}
}
// BenchmarkVtableDeduplication measures the speed of vtable deduplication
// by creating prePop vtables, then populating b.N objects with a
// different single vtable.
//
// When b.N is large (as in long benchmarks), memory usage may be high.
func BenchmarkVtableDeduplication(b *testing.B) {
prePop := 10
builder := flatbuffers.NewBuilder(0)
// pre-populate some vtables:
for i := 0; i < prePop; i++ {
builder.StartObject(i)
for j := 0; j < i; j++ {
builder.PrependInt16Slot(j, int16(j), 0)
}
builder.EndObject()
}
// benchmark deduplication of a new vtable:
b.ResetTimer()
for i := 0; i < b.N; i++ {
lim := prePop
builder.StartObject(lim)
for j := 0; j < lim; j++ {
builder.PrependInt16Slot(j, int16(j), 0)
}
builder.EndObject()
}
}