mirror of https://github.com/python/cpython.git
900 lines
19 KiB
C
900 lines
19 KiB
C
|
|
/* Integer object implementation */
|
|
|
|
#include "Python.h"
|
|
#include <ctype.h>
|
|
|
|
long
|
|
PyInt_GetMax(void)
|
|
{
|
|
return LONG_MAX; /* To initialize sys.maxint */
|
|
}
|
|
|
|
/* Standard Booleans */
|
|
|
|
PyIntObject _Py_ZeroStruct = {
|
|
PyObject_HEAD_INIT(&PyInt_Type)
|
|
0
|
|
};
|
|
|
|
PyIntObject _Py_TrueStruct = {
|
|
PyObject_HEAD_INIT(&PyInt_Type)
|
|
1
|
|
};
|
|
|
|
static PyObject *
|
|
err_ovf(char *msg)
|
|
{
|
|
PyErr_SetString(PyExc_OverflowError, msg);
|
|
return NULL;
|
|
}
|
|
|
|
/* Integers are quite normal objects, to make object handling uniform.
|
|
(Using odd pointers to represent integers would save much space
|
|
but require extra checks for this special case throughout the code.)
|
|
Since, a typical Python program spends much of its time allocating
|
|
and deallocating integers, these operations should be very fast.
|
|
Therefore we use a dedicated allocation scheme with a much lower
|
|
overhead (in space and time) than straight malloc(): a simple
|
|
dedicated free list, filled when necessary with memory from malloc().
|
|
*/
|
|
|
|
#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
|
|
#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
|
|
#define N_INTOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject))
|
|
|
|
struct _intblock {
|
|
struct _intblock *next;
|
|
PyIntObject objects[N_INTOBJECTS];
|
|
};
|
|
|
|
typedef struct _intblock PyIntBlock;
|
|
|
|
static PyIntBlock *block_list = NULL;
|
|
static PyIntObject *free_list = NULL;
|
|
|
|
static PyIntObject *
|
|
fill_free_list(void)
|
|
{
|
|
PyIntObject *p, *q;
|
|
/* XXX Int blocks escape the object heap. Use PyObject_MALLOC ??? */
|
|
p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock));
|
|
if (p == NULL)
|
|
return (PyIntObject *) PyErr_NoMemory();
|
|
((PyIntBlock *)p)->next = block_list;
|
|
block_list = (PyIntBlock *)p;
|
|
p = &((PyIntBlock *)p)->objects[0];
|
|
q = p + N_INTOBJECTS;
|
|
while (--q > p)
|
|
q->ob_type = (struct _typeobject *)(q-1);
|
|
q->ob_type = NULL;
|
|
return p + N_INTOBJECTS - 1;
|
|
}
|
|
|
|
#ifndef NSMALLPOSINTS
|
|
#define NSMALLPOSINTS 100
|
|
#endif
|
|
#ifndef NSMALLNEGINTS
|
|
#define NSMALLNEGINTS 1
|
|
#endif
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
/* References to small integers are saved in this array so that they
|
|
can be shared.
|
|
The integers that are saved are those in the range
|
|
-NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
|
|
*/
|
|
static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
|
|
#endif
|
|
#ifdef COUNT_ALLOCS
|
|
int quick_int_allocs, quick_neg_int_allocs;
|
|
#endif
|
|
|
|
PyObject *
|
|
PyInt_FromLong(long ival)
|
|
{
|
|
register PyIntObject *v;
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS &&
|
|
(v = small_ints[ival + NSMALLNEGINTS]) != NULL) {
|
|
Py_INCREF(v);
|
|
#ifdef COUNT_ALLOCS
|
|
if (ival >= 0)
|
|
quick_int_allocs++;
|
|
else
|
|
quick_neg_int_allocs++;
|
|
#endif
|
|
return (PyObject *) v;
|
|
}
|
|
#endif
|
|
if (free_list == NULL) {
|
|
if ((free_list = fill_free_list()) == NULL)
|
|
return NULL;
|
|
}
|
|
/* PyObject_New is inlined */
|
|
v = free_list;
|
|
free_list = (PyIntObject *)v->ob_type;
|
|
PyObject_INIT(v, &PyInt_Type);
|
|
v->ob_ival = ival;
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
|
|
/* save this one for a following allocation */
|
|
Py_INCREF(v);
|
|
small_ints[ival + NSMALLNEGINTS] = v;
|
|
}
|
|
#endif
|
|
return (PyObject *) v;
|
|
}
|
|
|
|
static void
|
|
int_dealloc(PyIntObject *v)
|
|
{
|
|
v->ob_type = (struct _typeobject *)free_list;
|
|
free_list = v;
|
|
}
|
|
|
|
long
|
|
PyInt_AsLong(register PyObject *op)
|
|
{
|
|
PyNumberMethods *nb;
|
|
PyIntObject *io;
|
|
long val;
|
|
|
|
if (op && PyInt_Check(op))
|
|
return PyInt_AS_LONG((PyIntObject*) op);
|
|
|
|
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
|
|
nb->nb_int == NULL) {
|
|
PyErr_SetString(PyExc_TypeError, "an integer is required");
|
|
return -1;
|
|
}
|
|
|
|
io = (PyIntObject*) (*nb->nb_int) (op);
|
|
if (io == NULL)
|
|
return -1;
|
|
if (!PyInt_Check(io)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"nb_int should return int object");
|
|
return -1;
|
|
}
|
|
|
|
val = PyInt_AS_LONG(io);
|
|
Py_DECREF(io);
|
|
|
|
return val;
|
|
}
|
|
|
|
PyObject *
|
|
PyInt_FromString(char *s, char **pend, int base)
|
|
{
|
|
char *end;
|
|
long x;
|
|
char buffer[256]; /* For errors */
|
|
|
|
if ((base != 0 && base < 2) || base > 36) {
|
|
PyErr_SetString(PyExc_ValueError, "int() base must be >= 2 and <= 36");
|
|
return NULL;
|
|
}
|
|
|
|
while (*s && isspace(Py_CHARMASK(*s)))
|
|
s++;
|
|
errno = 0;
|
|
if (base == 0 && s[0] == '0')
|
|
x = (long) PyOS_strtoul(s, &end, base);
|
|
else
|
|
x = PyOS_strtol(s, &end, base);
|
|
if (end == s || !isalnum(Py_CHARMASK(end[-1])))
|
|
goto bad;
|
|
while (*end && isspace(Py_CHARMASK(*end)))
|
|
end++;
|
|
if (*end != '\0') {
|
|
bad:
|
|
sprintf(buffer, "invalid literal for int(): %.200s", s);
|
|
PyErr_SetString(PyExc_ValueError, buffer);
|
|
return NULL;
|
|
}
|
|
else if (errno != 0) {
|
|
sprintf(buffer, "int() literal too large: %.200s", s);
|
|
PyErr_SetString(PyExc_ValueError, buffer);
|
|
return NULL;
|
|
}
|
|
if (pend)
|
|
*pend = end;
|
|
return PyInt_FromLong(x);
|
|
}
|
|
|
|
PyObject *
|
|
PyInt_FromUnicode(Py_UNICODE *s, int length, int base)
|
|
{
|
|
char buffer[256];
|
|
|
|
if (length >= sizeof(buffer)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"int() literal too large to convert");
|
|
return NULL;
|
|
}
|
|
if (PyUnicode_EncodeDecimal(s, length, buffer, NULL))
|
|
return NULL;
|
|
return PyInt_FromString(buffer, NULL, base);
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
/* Integers are seen as the "smallest" of all numeric types and thus
|
|
don't have any knowledge about conversion of other types to
|
|
integers. */
|
|
|
|
#define CONVERT_TO_LONG(obj, lng) \
|
|
if (PyInt_Check(obj)) { \
|
|
lng = PyInt_AS_LONG(obj); \
|
|
} \
|
|
else { \
|
|
Py_INCREF(Py_NotImplemented); \
|
|
return Py_NotImplemented; \
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
int_print(PyIntObject *v, FILE *fp, int flags)
|
|
/* flags -- not used but required by interface */
|
|
{
|
|
fprintf(fp, "%ld", v->ob_ival);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
int_repr(PyIntObject *v)
|
|
{
|
|
char buf[20];
|
|
sprintf(buf, "%ld", v->ob_ival);
|
|
return PyString_FromString(buf);
|
|
}
|
|
|
|
static int
|
|
int_compare(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long i = v->ob_ival;
|
|
register long j = w->ob_ival;
|
|
return (i < j) ? -1 : (i > j) ? 1 : 0;
|
|
}
|
|
|
|
static long
|
|
int_hash(PyIntObject *v)
|
|
{
|
|
/* XXX If this is changed, you also need to change the way
|
|
Python's long, float and complex types are hashed. */
|
|
long x = v -> ob_ival;
|
|
if (x == -1)
|
|
x = -2;
|
|
return x;
|
|
}
|
|
|
|
static PyObject *
|
|
int_add(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b, x;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
x = a + b;
|
|
if ((x^a) < 0 && (x^b) < 0)
|
|
return err_ovf("integer addition");
|
|
return PyInt_FromLong(x);
|
|
}
|
|
|
|
static PyObject *
|
|
int_sub(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b, x;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
x = a - b;
|
|
if ((x^a) < 0 && (x^~b) < 0)
|
|
return err_ovf("integer subtraction");
|
|
return PyInt_FromLong(x);
|
|
}
|
|
|
|
/*
|
|
Integer overflow checking used to be done using a double, but on 64
|
|
bit machines (where both long and double are 64 bit) this fails
|
|
because the double doesn't have enough precision. John Tromp suggests
|
|
the following algorithm:
|
|
|
|
Suppose again we normalize a and b to be nonnegative.
|
|
Let ah and al (bh and bl) be the high and low 32 bits of a (b, resp.).
|
|
Now we test ah and bh against zero and get essentially 3 possible outcomes.
|
|
|
|
1) both ah and bh > 0 : then report overflow
|
|
|
|
2) both ah and bh = 0 : then compute a*b and report overflow if it comes out
|
|
negative
|
|
|
|
3) ah > 0 and bh = 0 : compute ah*bl and report overflow if it's >= 2^31
|
|
compute al*bl and report overflow if it's negative
|
|
add (ah*bl)<<32 to al*bl and report overflow if
|
|
it's negative
|
|
|
|
In case of no overflow the result is then negated if necessary.
|
|
|
|
The majority of cases will be 2), in which case this method is the same as
|
|
what I suggested before. If multiplication is expensive enough, then the
|
|
other method is faster on case 3), but also more work to program, so I
|
|
guess the above is the preferred solution.
|
|
|
|
*/
|
|
|
|
static PyObject *
|
|
int_mul(PyObject *v, PyObject *w)
|
|
{
|
|
long a, b, ah, bh, x, y;
|
|
int s = 1;
|
|
|
|
if (v->ob_type->tp_as_sequence &&
|
|
v->ob_type->tp_as_sequence->sq_repeat) {
|
|
/* sequence * int */
|
|
a = PyInt_AsLong(w);
|
|
return (*v->ob_type->tp_as_sequence->sq_repeat)(v, a);
|
|
}
|
|
else if (w->ob_type->tp_as_sequence &&
|
|
w->ob_type->tp_as_sequence->sq_repeat) {
|
|
/* int * sequence */
|
|
a = PyInt_AsLong(v);
|
|
return (*w->ob_type->tp_as_sequence->sq_repeat)(w, a);
|
|
}
|
|
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
ah = a >> (LONG_BIT/2);
|
|
bh = b >> (LONG_BIT/2);
|
|
|
|
/* Quick test for common case: two small positive ints */
|
|
|
|
if (ah == 0 && bh == 0) {
|
|
x = a*b;
|
|
if (x < 0)
|
|
goto bad;
|
|
return PyInt_FromLong(x);
|
|
}
|
|
|
|
/* Arrange that a >= b >= 0 */
|
|
|
|
if (a < 0) {
|
|
a = -a;
|
|
if (a < 0) {
|
|
/* Largest negative */
|
|
if (b == 0 || b == 1) {
|
|
x = a*b;
|
|
goto ok;
|
|
}
|
|
else
|
|
goto bad;
|
|
}
|
|
s = -s;
|
|
ah = a >> (LONG_BIT/2);
|
|
}
|
|
if (b < 0) {
|
|
b = -b;
|
|
if (b < 0) {
|
|
/* Largest negative */
|
|
if (a == 0 || (a == 1 && s == 1)) {
|
|
x = a*b;
|
|
goto ok;
|
|
}
|
|
else
|
|
goto bad;
|
|
}
|
|
s = -s;
|
|
bh = b >> (LONG_BIT/2);
|
|
}
|
|
|
|
/* 1) both ah and bh > 0 : then report overflow */
|
|
|
|
if (ah != 0 && bh != 0)
|
|
goto bad;
|
|
|
|
/* 2) both ah and bh = 0 : then compute a*b and report
|
|
overflow if it comes out negative */
|
|
|
|
if (ah == 0 && bh == 0) {
|
|
x = a*b;
|
|
if (x < 0)
|
|
goto bad;
|
|
return PyInt_FromLong(x*s);
|
|
}
|
|
|
|
if (a < b) {
|
|
/* Swap */
|
|
x = a;
|
|
a = b;
|
|
b = x;
|
|
ah = bh;
|
|
/* bh not used beyond this point */
|
|
}
|
|
|
|
/* 3) ah > 0 and bh = 0 : compute ah*bl and report overflow if
|
|
it's >= 2^31
|
|
compute al*bl and report overflow if it's negative
|
|
add (ah*bl)<<32 to al*bl and report overflow if
|
|
it's negative
|
|
(NB b == bl in this case, and we make a = al) */
|
|
|
|
y = ah*b;
|
|
if (y >= (1L << (LONG_BIT/2 - 1)))
|
|
goto bad;
|
|
a &= (1L << (LONG_BIT/2)) - 1;
|
|
x = a*b;
|
|
if (x < 0)
|
|
goto bad;
|
|
x += y << (LONG_BIT/2);
|
|
if (x < 0)
|
|
goto bad;
|
|
ok:
|
|
return PyInt_FromLong(x * s);
|
|
|
|
bad:
|
|
return err_ovf("integer multiplication");
|
|
}
|
|
|
|
static int
|
|
i_divmod(register long x, register long y,
|
|
long *p_xdivy, long *p_xmody)
|
|
{
|
|
long xdivy, xmody;
|
|
|
|
if (y == 0) {
|
|
PyErr_SetString(PyExc_ZeroDivisionError,
|
|
"integer division or modulo by zero");
|
|
return -1;
|
|
}
|
|
/* (-sys.maxint-1)/-1 is the only overflow case. */
|
|
if (y == -1 && x < 0 && x == -x) {
|
|
err_ovf("integer division");
|
|
return -1;
|
|
}
|
|
xdivy = x / y;
|
|
xmody = x - xdivy * y;
|
|
/* If the signs of x and y differ, and the remainder is non-0,
|
|
* C89 doesn't define whether xdivy is now the floor or the
|
|
* ceiling of the infinitely precise quotient. We want the floor,
|
|
* and we have it iff the remainder's sign matches y's.
|
|
*/
|
|
if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
|
|
xmody += y;
|
|
--xdivy;
|
|
assert(xmody && ((y ^ xmody) >= 0));
|
|
}
|
|
*p_xdivy = xdivy;
|
|
*p_xmody = xmody;
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
int_div(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
long d, m;
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
if (i_divmod(xi, yi, &d, &m) < 0)
|
|
return NULL;
|
|
return PyInt_FromLong(d);
|
|
}
|
|
|
|
static PyObject *
|
|
int_mod(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
long d, m;
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
if (i_divmod(xi, yi, &d, &m) < 0)
|
|
return NULL;
|
|
return PyInt_FromLong(m);
|
|
}
|
|
|
|
static PyObject *
|
|
int_divmod(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
long d, m;
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
if (i_divmod(xi, yi, &d, &m) < 0)
|
|
return NULL;
|
|
return Py_BuildValue("(ll)", d, m);
|
|
}
|
|
|
|
static PyObject *
|
|
int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z)
|
|
{
|
|
#if 1
|
|
register long iv, iw, iz=0, ix, temp, prev;
|
|
CONVERT_TO_LONG(v, iv);
|
|
CONVERT_TO_LONG(w, iw);
|
|
if (iw < 0) {
|
|
if (iv)
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"cannot raise integer to a negative power");
|
|
else
|
|
PyErr_SetString(PyExc_ZeroDivisionError,
|
|
"cannot raise 0 to a negative power");
|
|
return NULL;
|
|
}
|
|
if ((PyObject *)z != Py_None) {
|
|
CONVERT_TO_LONG(z, iz);
|
|
if (iz == 0) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"pow() arg 3 cannot be 0");
|
|
return NULL;
|
|
}
|
|
}
|
|
/*
|
|
* XXX: The original exponentiation code stopped looping
|
|
* when temp hit zero; this code will continue onwards
|
|
* unnecessarily, but at least it won't cause any errors.
|
|
* Hopefully the speed improvement from the fast exponentiation
|
|
* will compensate for the slight inefficiency.
|
|
* XXX: Better handling of overflows is desperately needed.
|
|
*/
|
|
temp = iv;
|
|
ix = 1;
|
|
while (iw > 0) {
|
|
prev = ix; /* Save value for overflow check */
|
|
if (iw & 1) {
|
|
ix = ix*temp;
|
|
if (temp == 0)
|
|
break; /* Avoid ix / 0 */
|
|
if (ix / temp != prev)
|
|
return err_ovf("integer exponentiation");
|
|
}
|
|
iw >>= 1; /* Shift exponent down by 1 bit */
|
|
if (iw==0) break;
|
|
prev = temp;
|
|
temp *= temp; /* Square the value of temp */
|
|
if (prev!=0 && temp/prev!=prev)
|
|
return err_ovf("integer exponentiation");
|
|
if (iz) {
|
|
/* If we did a multiplication, perform a modulo */
|
|
ix = ix % iz;
|
|
temp = temp % iz;
|
|
}
|
|
}
|
|
if (iz) {
|
|
long div, mod;
|
|
if (i_divmod(ix, iz, &div, &mod) < 0)
|
|
return(NULL);
|
|
ix=mod;
|
|
}
|
|
return PyInt_FromLong(ix);
|
|
#else
|
|
register long iv, iw, ix;
|
|
CONVERT_TO_LONG(v, iv);
|
|
CONVERT_TO_LONG(w, iw);
|
|
if (iw < 0) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"integer to the negative power");
|
|
return NULL;
|
|
}
|
|
if ((PyObject *)z != Py_None) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"pow(int, int, int) not yet supported");
|
|
return NULL;
|
|
}
|
|
ix = 1;
|
|
while (--iw >= 0) {
|
|
long prev = ix;
|
|
ix = ix * iv;
|
|
if (iv == 0)
|
|
break; /* 0 to some power -- avoid ix / 0 */
|
|
if (ix / iv != prev)
|
|
return err_ovf("integer exponentiation");
|
|
}
|
|
return PyInt_FromLong(ix);
|
|
#endif
|
|
}
|
|
|
|
static PyObject *
|
|
int_neg(PyIntObject *v)
|
|
{
|
|
register long a, x;
|
|
a = v->ob_ival;
|
|
x = -a;
|
|
if (a < 0 && x < 0)
|
|
return err_ovf("integer negation");
|
|
return PyInt_FromLong(x);
|
|
}
|
|
|
|
static PyObject *
|
|
int_pos(PyIntObject *v)
|
|
{
|
|
Py_INCREF(v);
|
|
return (PyObject *)v;
|
|
}
|
|
|
|
static PyObject *
|
|
int_abs(PyIntObject *v)
|
|
{
|
|
if (v->ob_ival >= 0)
|
|
return int_pos(v);
|
|
else
|
|
return int_neg(v);
|
|
}
|
|
|
|
static int
|
|
int_nonzero(PyIntObject *v)
|
|
{
|
|
return v->ob_ival != 0;
|
|
}
|
|
|
|
static PyObject *
|
|
int_invert(PyIntObject *v)
|
|
{
|
|
return PyInt_FromLong(~v->ob_ival);
|
|
}
|
|
|
|
static PyObject *
|
|
int_lshift(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
if (b < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "negative shift count");
|
|
return NULL;
|
|
}
|
|
if (a == 0 || b == 0) {
|
|
Py_INCREF(v);
|
|
return (PyObject *) v;
|
|
}
|
|
if (b >= LONG_BIT) {
|
|
return PyInt_FromLong(0L);
|
|
}
|
|
a = (unsigned long)a << b;
|
|
return PyInt_FromLong(a);
|
|
}
|
|
|
|
static PyObject *
|
|
int_rshift(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
if (b < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "negative shift count");
|
|
return NULL;
|
|
}
|
|
if (a == 0 || b == 0) {
|
|
Py_INCREF(v);
|
|
return (PyObject *) v;
|
|
}
|
|
if (b >= LONG_BIT) {
|
|
if (a < 0)
|
|
a = -1;
|
|
else
|
|
a = 0;
|
|
}
|
|
else {
|
|
a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b);
|
|
}
|
|
return PyInt_FromLong(a);
|
|
}
|
|
|
|
static PyObject *
|
|
int_and(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
return PyInt_FromLong(a & b);
|
|
}
|
|
|
|
static PyObject *
|
|
int_xor(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
return PyInt_FromLong(a ^ b);
|
|
}
|
|
|
|
static PyObject *
|
|
int_or(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
return PyInt_FromLong(a | b);
|
|
}
|
|
|
|
static PyObject *
|
|
int_int(PyIntObject *v)
|
|
{
|
|
Py_INCREF(v);
|
|
return (PyObject *)v;
|
|
}
|
|
|
|
static PyObject *
|
|
int_long(PyIntObject *v)
|
|
{
|
|
return PyLong_FromLong((v -> ob_ival));
|
|
}
|
|
|
|
static PyObject *
|
|
int_float(PyIntObject *v)
|
|
{
|
|
return PyFloat_FromDouble((double)(v -> ob_ival));
|
|
}
|
|
|
|
static PyObject *
|
|
int_oct(PyIntObject *v)
|
|
{
|
|
char buf[100];
|
|
long x = v -> ob_ival;
|
|
if (x == 0)
|
|
strcpy(buf, "0");
|
|
else
|
|
sprintf(buf, "0%lo", x);
|
|
return PyString_FromString(buf);
|
|
}
|
|
|
|
static PyObject *
|
|
int_hex(PyIntObject *v)
|
|
{
|
|
char buf[100];
|
|
long x = v -> ob_ival;
|
|
sprintf(buf, "0x%lx", x);
|
|
return PyString_FromString(buf);
|
|
}
|
|
|
|
static PyNumberMethods int_as_number = {
|
|
(binaryfunc)int_add, /*nb_add*/
|
|
(binaryfunc)int_sub, /*nb_subtract*/
|
|
(binaryfunc)int_mul, /*nb_multiply*/
|
|
(binaryfunc)int_div, /*nb_divide*/
|
|
(binaryfunc)int_mod, /*nb_remainder*/
|
|
(binaryfunc)int_divmod, /*nb_divmod*/
|
|
(ternaryfunc)int_pow, /*nb_power*/
|
|
(unaryfunc)int_neg, /*nb_negative*/
|
|
(unaryfunc)int_pos, /*nb_positive*/
|
|
(unaryfunc)int_abs, /*nb_absolute*/
|
|
(inquiry)int_nonzero, /*nb_nonzero*/
|
|
(unaryfunc)int_invert, /*nb_invert*/
|
|
(binaryfunc)int_lshift, /*nb_lshift*/
|
|
(binaryfunc)int_rshift, /*nb_rshift*/
|
|
(binaryfunc)int_and, /*nb_and*/
|
|
(binaryfunc)int_xor, /*nb_xor*/
|
|
(binaryfunc)int_or, /*nb_or*/
|
|
0, /*nb_coerce*/
|
|
(unaryfunc)int_int, /*nb_int*/
|
|
(unaryfunc)int_long, /*nb_long*/
|
|
(unaryfunc)int_float, /*nb_float*/
|
|
(unaryfunc)int_oct, /*nb_oct*/
|
|
(unaryfunc)int_hex, /*nb_hex*/
|
|
0, /*nb_inplace_add*/
|
|
0, /*nb_inplace_subtract*/
|
|
0, /*nb_inplace_multiply*/
|
|
0, /*nb_inplace_divide*/
|
|
0, /*nb_inplace_remainder*/
|
|
0, /*nb_inplace_power*/
|
|
0, /*nb_inplace_lshift*/
|
|
0, /*nb_inplace_rshift*/
|
|
0, /*nb_inplace_and*/
|
|
0, /*nb_inplace_xor*/
|
|
0, /*nb_inplace_or*/
|
|
};
|
|
|
|
PyTypeObject PyInt_Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"int",
|
|
sizeof(PyIntObject),
|
|
0,
|
|
(destructor)int_dealloc, /*tp_dealloc*/
|
|
(printfunc)int_print, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
(cmpfunc)int_compare, /*tp_compare*/
|
|
(reprfunc)int_repr, /*tp_repr*/
|
|
&int_as_number, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
(hashfunc)int_hash, /*tp_hash*/
|
|
0, /*tp_call*/
|
|
0, /*tp_str*/
|
|
0, /*tp_getattro*/
|
|
0, /*tp_setattro*/
|
|
0, /*tp_as_buffer*/
|
|
Py_TPFLAGS_CHECKTYPES /*tp_flags*/
|
|
};
|
|
|
|
void
|
|
PyInt_Fini(void)
|
|
{
|
|
PyIntObject *p;
|
|
PyIntBlock *list, *next;
|
|
int i;
|
|
int bc, bf; /* block count, number of freed blocks */
|
|
int irem, isum; /* remaining unfreed ints per block, total */
|
|
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
PyIntObject **q;
|
|
|
|
i = NSMALLNEGINTS + NSMALLPOSINTS;
|
|
q = small_ints;
|
|
while (--i >= 0) {
|
|
Py_XDECREF(*q);
|
|
*q++ = NULL;
|
|
}
|
|
#endif
|
|
bc = 0;
|
|
bf = 0;
|
|
isum = 0;
|
|
list = block_list;
|
|
block_list = NULL;
|
|
free_list = NULL;
|
|
while (list != NULL) {
|
|
bc++;
|
|
irem = 0;
|
|
for (i = 0, p = &list->objects[0];
|
|
i < N_INTOBJECTS;
|
|
i++, p++) {
|
|
if (PyInt_Check(p) && p->ob_refcnt != 0)
|
|
irem++;
|
|
}
|
|
next = list->next;
|
|
if (irem) {
|
|
list->next = block_list;
|
|
block_list = list;
|
|
for (i = 0, p = &list->objects[0];
|
|
i < N_INTOBJECTS;
|
|
i++, p++) {
|
|
if (!PyInt_Check(p) || p->ob_refcnt == 0) {
|
|
p->ob_type = (struct _typeobject *)
|
|
free_list;
|
|
free_list = p;
|
|
}
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
else if (-NSMALLNEGINTS <= p->ob_ival &&
|
|
p->ob_ival < NSMALLPOSINTS &&
|
|
small_ints[p->ob_ival +
|
|
NSMALLNEGINTS] == NULL) {
|
|
Py_INCREF(p);
|
|
small_ints[p->ob_ival +
|
|
NSMALLNEGINTS] = p;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
else {
|
|
PyMem_FREE(list); /* XXX PyObject_FREE ??? */
|
|
bf++;
|
|
}
|
|
isum += irem;
|
|
list = next;
|
|
}
|
|
if (!Py_VerboseFlag)
|
|
return;
|
|
fprintf(stderr, "# cleanup ints");
|
|
if (!isum) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
else {
|
|
fprintf(stderr,
|
|
": %d unfreed int%s in %d out of %d block%s\n",
|
|
isum, isum == 1 ? "" : "s",
|
|
bc - bf, bc, bc == 1 ? "" : "s");
|
|
}
|
|
if (Py_VerboseFlag > 1) {
|
|
list = block_list;
|
|
while (list != NULL) {
|
|
for (i = 0, p = &list->objects[0];
|
|
i < N_INTOBJECTS;
|
|
i++, p++) {
|
|
if (PyInt_Check(p) && p->ob_refcnt != 0)
|
|
fprintf(stderr,
|
|
"# <int at %p, refcnt=%d, val=%ld>\n",
|
|
p, p->ob_refcnt, p->ob_ival);
|
|
}
|
|
list = list->next;
|
|
}
|
|
}
|
|
}
|