mirror of https://github.com/python/cpython.git
3839 lines
130 KiB
Python
3839 lines
130 KiB
Python
"""
|
|
The typing module: Support for gradual typing as defined by PEP 484 and subsequent PEPs.
|
|
|
|
Among other things, the module includes the following:
|
|
* Generic, Protocol, and internal machinery to support generic aliases.
|
|
All subscripted types like X[int], Union[int, str] are generic aliases.
|
|
* Various "special forms" that have unique meanings in type annotations:
|
|
NoReturn, Never, ClassVar, Self, Concatenate, Unpack, and others.
|
|
* Classes whose instances can be type arguments to generic classes and functions:
|
|
TypeVar, ParamSpec, TypeVarTuple.
|
|
* Public helper functions: get_type_hints, overload, cast, final, and others.
|
|
* Several protocols to support duck-typing:
|
|
SupportsFloat, SupportsIndex, SupportsAbs, and others.
|
|
* Special types: NewType, NamedTuple, TypedDict.
|
|
* Deprecated aliases for builtin types and collections.abc ABCs.
|
|
|
|
Any name not present in __all__ is an implementation detail
|
|
that may be changed without notice. Use at your own risk!
|
|
"""
|
|
|
|
from abc import abstractmethod, ABCMeta
|
|
import annotationlib
|
|
from annotationlib import ForwardRef
|
|
import collections
|
|
from collections import defaultdict
|
|
import collections.abc
|
|
import copyreg
|
|
import functools
|
|
import operator
|
|
import sys
|
|
import types
|
|
from types import GenericAlias
|
|
|
|
from _typing import (
|
|
_idfunc,
|
|
TypeVar,
|
|
ParamSpec,
|
|
TypeVarTuple,
|
|
ParamSpecArgs,
|
|
ParamSpecKwargs,
|
|
TypeAliasType,
|
|
Generic,
|
|
NoDefault,
|
|
)
|
|
|
|
# Please keep __all__ alphabetized within each category.
|
|
__all__ = [
|
|
# Super-special typing primitives.
|
|
'Annotated',
|
|
'Any',
|
|
'Callable',
|
|
'ClassVar',
|
|
'Concatenate',
|
|
'Final',
|
|
'ForwardRef',
|
|
'Generic',
|
|
'Literal',
|
|
'Optional',
|
|
'ParamSpec',
|
|
'Protocol',
|
|
'Tuple',
|
|
'Type',
|
|
'TypeVar',
|
|
'TypeVarTuple',
|
|
'Union',
|
|
|
|
# ABCs (from collections.abc).
|
|
'AbstractSet', # collections.abc.Set.
|
|
'Container',
|
|
'ContextManager',
|
|
'Hashable',
|
|
'ItemsView',
|
|
'Iterable',
|
|
'Iterator',
|
|
'KeysView',
|
|
'Mapping',
|
|
'MappingView',
|
|
'MutableMapping',
|
|
'MutableSequence',
|
|
'MutableSet',
|
|
'Sequence',
|
|
'Sized',
|
|
'ValuesView',
|
|
'Awaitable',
|
|
'AsyncIterator',
|
|
'AsyncIterable',
|
|
'Coroutine',
|
|
'Collection',
|
|
'AsyncGenerator',
|
|
'AsyncContextManager',
|
|
|
|
# Structural checks, a.k.a. protocols.
|
|
'Reversible',
|
|
'SupportsAbs',
|
|
'SupportsBytes',
|
|
'SupportsComplex',
|
|
'SupportsFloat',
|
|
'SupportsIndex',
|
|
'SupportsInt',
|
|
'SupportsRound',
|
|
|
|
# Concrete collection types.
|
|
'ChainMap',
|
|
'Counter',
|
|
'Deque',
|
|
'Dict',
|
|
'DefaultDict',
|
|
'List',
|
|
'OrderedDict',
|
|
'Set',
|
|
'FrozenSet',
|
|
'NamedTuple', # Not really a type.
|
|
'TypedDict', # Not really a type.
|
|
'Generator',
|
|
|
|
# Other concrete types.
|
|
'BinaryIO',
|
|
'IO',
|
|
'Match',
|
|
'Pattern',
|
|
'TextIO',
|
|
|
|
# One-off things.
|
|
'AnyStr',
|
|
'assert_type',
|
|
'assert_never',
|
|
'cast',
|
|
'clear_overloads',
|
|
'dataclass_transform',
|
|
'evaluate_forward_ref',
|
|
'final',
|
|
'get_args',
|
|
'get_origin',
|
|
'get_overloads',
|
|
'get_protocol_members',
|
|
'get_type_hints',
|
|
'is_protocol',
|
|
'is_typeddict',
|
|
'LiteralString',
|
|
'Never',
|
|
'NewType',
|
|
'no_type_check',
|
|
'no_type_check_decorator',
|
|
'NoDefault',
|
|
'NoReturn',
|
|
'NotRequired',
|
|
'overload',
|
|
'override',
|
|
'ParamSpecArgs',
|
|
'ParamSpecKwargs',
|
|
'ReadOnly',
|
|
'Required',
|
|
'reveal_type',
|
|
'runtime_checkable',
|
|
'Self',
|
|
'Text',
|
|
'TYPE_CHECKING',
|
|
'TypeAlias',
|
|
'TypeGuard',
|
|
'TypeIs',
|
|
'TypeAliasType',
|
|
'Unpack',
|
|
]
|
|
|
|
|
|
def _type_convert(arg, module=None, *, allow_special_forms=False):
|
|
"""For converting None to type(None), and strings to ForwardRef."""
|
|
if arg is None:
|
|
return type(None)
|
|
if isinstance(arg, str):
|
|
return _make_forward_ref(arg, module=module, is_class=allow_special_forms)
|
|
return arg
|
|
|
|
|
|
def _type_check(arg, msg, is_argument=True, module=None, *, allow_special_forms=False):
|
|
"""Check that the argument is a type, and return it (internal helper).
|
|
|
|
As a special case, accept None and return type(None) instead. Also wrap strings
|
|
into ForwardRef instances. Consider several corner cases, for example plain
|
|
special forms like Union are not valid, while Union[int, str] is OK, etc.
|
|
The msg argument is a human-readable error message, e.g.::
|
|
|
|
"Union[arg, ...]: arg should be a type."
|
|
|
|
We append the repr() of the actual value (truncated to 100 chars).
|
|
"""
|
|
invalid_generic_forms = (Generic, Protocol)
|
|
if not allow_special_forms:
|
|
invalid_generic_forms += (ClassVar,)
|
|
if is_argument:
|
|
invalid_generic_forms += (Final,)
|
|
|
|
arg = _type_convert(arg, module=module, allow_special_forms=allow_special_forms)
|
|
if (isinstance(arg, _GenericAlias) and
|
|
arg.__origin__ in invalid_generic_forms):
|
|
raise TypeError(f"{arg} is not valid as type argument")
|
|
if arg in (Any, LiteralString, NoReturn, Never, Self, TypeAlias):
|
|
return arg
|
|
if allow_special_forms and arg in (ClassVar, Final):
|
|
return arg
|
|
if isinstance(arg, _SpecialForm) or arg in (Generic, Protocol):
|
|
raise TypeError(f"Plain {arg} is not valid as type argument")
|
|
if type(arg) is tuple:
|
|
raise TypeError(f"{msg} Got {arg!r:.100}.")
|
|
return arg
|
|
|
|
|
|
def _is_param_expr(arg):
|
|
return arg is ... or isinstance(arg,
|
|
(tuple, list, ParamSpec, _ConcatenateGenericAlias))
|
|
|
|
|
|
def _should_unflatten_callable_args(typ, args):
|
|
"""Internal helper for munging collections.abc.Callable's __args__.
|
|
|
|
The canonical representation for a Callable's __args__ flattens the
|
|
argument types, see https://github.com/python/cpython/issues/86361.
|
|
|
|
For example::
|
|
|
|
>>> import collections.abc
|
|
>>> P = ParamSpec('P')
|
|
>>> collections.abc.Callable[[int, int], str].__args__ == (int, int, str)
|
|
True
|
|
>>> collections.abc.Callable[P, str].__args__ == (P, str)
|
|
True
|
|
|
|
As a result, if we need to reconstruct the Callable from its __args__,
|
|
we need to unflatten it.
|
|
"""
|
|
return (
|
|
typ.__origin__ is collections.abc.Callable
|
|
and not (len(args) == 2 and _is_param_expr(args[0]))
|
|
)
|
|
|
|
|
|
def _type_repr(obj):
|
|
"""Return the repr() of an object, special-casing types (internal helper).
|
|
|
|
If obj is a type, we return a shorter version than the default
|
|
type.__repr__, based on the module and qualified name, which is
|
|
typically enough to uniquely identify a type. For everything
|
|
else, we fall back on repr(obj).
|
|
"""
|
|
if isinstance(obj, tuple):
|
|
# Special case for `repr` of types with `ParamSpec`:
|
|
return '[' + ', '.join(_type_repr(t) for t in obj) + ']'
|
|
return annotationlib.value_to_string(obj)
|
|
|
|
|
|
def _collect_type_parameters(args, *, enforce_default_ordering: bool = True):
|
|
"""Collect all type parameters in args
|
|
in order of first appearance (lexicographic order).
|
|
|
|
For example::
|
|
|
|
>>> P = ParamSpec('P')
|
|
>>> T = TypeVar('T')
|
|
>>> _collect_type_parameters((T, Callable[P, T]))
|
|
(~T, ~P)
|
|
"""
|
|
# required type parameter cannot appear after parameter with default
|
|
default_encountered = False
|
|
# or after TypeVarTuple
|
|
type_var_tuple_encountered = False
|
|
parameters = []
|
|
for t in args:
|
|
if isinstance(t, type):
|
|
# We don't want __parameters__ descriptor of a bare Python class.
|
|
pass
|
|
elif isinstance(t, tuple):
|
|
# `t` might be a tuple, when `ParamSpec` is substituted with
|
|
# `[T, int]`, or `[int, *Ts]`, etc.
|
|
for x in t:
|
|
for collected in _collect_type_parameters([x]):
|
|
if collected not in parameters:
|
|
parameters.append(collected)
|
|
elif hasattr(t, '__typing_subst__'):
|
|
if t not in parameters:
|
|
if enforce_default_ordering:
|
|
if type_var_tuple_encountered and t.has_default():
|
|
raise TypeError('Type parameter with a default'
|
|
' follows TypeVarTuple')
|
|
|
|
if t.has_default():
|
|
default_encountered = True
|
|
elif default_encountered:
|
|
raise TypeError(f'Type parameter {t!r} without a default'
|
|
' follows type parameter with a default')
|
|
|
|
parameters.append(t)
|
|
else:
|
|
if _is_unpacked_typevartuple(t):
|
|
type_var_tuple_encountered = True
|
|
for x in getattr(t, '__parameters__', ()):
|
|
if x not in parameters:
|
|
parameters.append(x)
|
|
return tuple(parameters)
|
|
|
|
|
|
def _check_generic_specialization(cls, arguments):
|
|
"""Check correct count for parameters of a generic cls (internal helper).
|
|
|
|
This gives a nice error message in case of count mismatch.
|
|
"""
|
|
expected_len = len(cls.__parameters__)
|
|
if not expected_len:
|
|
raise TypeError(f"{cls} is not a generic class")
|
|
actual_len = len(arguments)
|
|
if actual_len != expected_len:
|
|
# deal with defaults
|
|
if actual_len < expected_len:
|
|
# If the parameter at index `actual_len` in the parameters list
|
|
# has a default, then all parameters after it must also have
|
|
# one, because we validated as much in _collect_type_parameters().
|
|
# That means that no error needs to be raised here, despite
|
|
# the number of arguments being passed not matching the number
|
|
# of parameters: all parameters that aren't explicitly
|
|
# specialized in this call are parameters with default values.
|
|
if cls.__parameters__[actual_len].has_default():
|
|
return
|
|
|
|
expected_len -= sum(p.has_default() for p in cls.__parameters__)
|
|
expect_val = f"at least {expected_len}"
|
|
else:
|
|
expect_val = expected_len
|
|
|
|
raise TypeError(f"Too {'many' if actual_len > expected_len else 'few'} arguments"
|
|
f" for {cls}; actual {actual_len}, expected {expect_val}")
|
|
|
|
|
|
def _unpack_args(*args):
|
|
newargs = []
|
|
for arg in args:
|
|
subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
|
|
if subargs is not None and not (subargs and subargs[-1] is ...):
|
|
newargs.extend(subargs)
|
|
else:
|
|
newargs.append(arg)
|
|
return newargs
|
|
|
|
def _deduplicate(params, *, unhashable_fallback=False):
|
|
# Weed out strict duplicates, preserving the first of each occurrence.
|
|
try:
|
|
return dict.fromkeys(params)
|
|
except TypeError:
|
|
if not unhashable_fallback:
|
|
raise
|
|
# Happens for cases like `Annotated[dict, {'x': IntValidator()}]`
|
|
return _deduplicate_unhashable(params)
|
|
|
|
def _deduplicate_unhashable(unhashable_params):
|
|
new_unhashable = []
|
|
for t in unhashable_params:
|
|
if t not in new_unhashable:
|
|
new_unhashable.append(t)
|
|
return new_unhashable
|
|
|
|
def _compare_args_orderless(first_args, second_args):
|
|
first_unhashable = _deduplicate_unhashable(first_args)
|
|
second_unhashable = _deduplicate_unhashable(second_args)
|
|
t = list(second_unhashable)
|
|
try:
|
|
for elem in first_unhashable:
|
|
t.remove(elem)
|
|
except ValueError:
|
|
return False
|
|
return not t
|
|
|
|
def _remove_dups_flatten(parameters):
|
|
"""Internal helper for Union creation and substitution.
|
|
|
|
Flatten Unions among parameters, then remove duplicates.
|
|
"""
|
|
# Flatten out Union[Union[...], ...].
|
|
params = []
|
|
for p in parameters:
|
|
if isinstance(p, (_UnionGenericAlias, types.UnionType)):
|
|
params.extend(p.__args__)
|
|
else:
|
|
params.append(p)
|
|
|
|
return tuple(_deduplicate(params, unhashable_fallback=True))
|
|
|
|
|
|
def _flatten_literal_params(parameters):
|
|
"""Internal helper for Literal creation: flatten Literals among parameters."""
|
|
params = []
|
|
for p in parameters:
|
|
if isinstance(p, _LiteralGenericAlias):
|
|
params.extend(p.__args__)
|
|
else:
|
|
params.append(p)
|
|
return tuple(params)
|
|
|
|
|
|
_cleanups = []
|
|
_caches = {}
|
|
|
|
|
|
def _tp_cache(func=None, /, *, typed=False):
|
|
"""Internal wrapper caching __getitem__ of generic types.
|
|
|
|
For non-hashable arguments, the original function is used as a fallback.
|
|
"""
|
|
def decorator(func):
|
|
# The callback 'inner' references the newly created lru_cache
|
|
# indirectly by performing a lookup in the global '_caches' dictionary.
|
|
# This breaks a reference that can be problematic when combined with
|
|
# C API extensions that leak references to types. See GH-98253.
|
|
|
|
cache = functools.lru_cache(typed=typed)(func)
|
|
_caches[func] = cache
|
|
_cleanups.append(cache.cache_clear)
|
|
del cache
|
|
|
|
@functools.wraps(func)
|
|
def inner(*args, **kwds):
|
|
try:
|
|
return _caches[func](*args, **kwds)
|
|
except TypeError:
|
|
pass # All real errors (not unhashable args) are raised below.
|
|
return func(*args, **kwds)
|
|
return inner
|
|
|
|
if func is not None:
|
|
return decorator(func)
|
|
|
|
return decorator
|
|
|
|
|
|
def _deprecation_warning_for_no_type_params_passed(funcname: str) -> None:
|
|
import warnings
|
|
|
|
depr_message = (
|
|
f"Failing to pass a value to the 'type_params' parameter "
|
|
f"of {funcname!r} is deprecated, as it leads to incorrect behaviour "
|
|
f"when calling {funcname} on a stringified annotation "
|
|
f"that references a PEP 695 type parameter. "
|
|
f"It will be disallowed in Python 3.15."
|
|
)
|
|
warnings.warn(depr_message, category=DeprecationWarning, stacklevel=3)
|
|
|
|
|
|
class _Sentinel:
|
|
__slots__ = ()
|
|
def __repr__(self):
|
|
return '<sentinel>'
|
|
|
|
|
|
_sentinel = _Sentinel()
|
|
|
|
|
|
def _eval_type(t, globalns, localns, type_params=_sentinel, *, recursive_guard=frozenset(),
|
|
format=annotationlib.Format.VALUE, owner=None):
|
|
"""Evaluate all forward references in the given type t.
|
|
|
|
For use of globalns and localns see the docstring for get_type_hints().
|
|
recursive_guard is used to prevent infinite recursion with a recursive
|
|
ForwardRef.
|
|
"""
|
|
if type_params is _sentinel:
|
|
_deprecation_warning_for_no_type_params_passed("typing._eval_type")
|
|
type_params = ()
|
|
if isinstance(t, ForwardRef):
|
|
# If the forward_ref has __forward_module__ set, evaluate() infers the globals
|
|
# from the module, and it will probably pick better than the globals we have here.
|
|
if t.__forward_module__ is not None:
|
|
globalns = None
|
|
return evaluate_forward_ref(t, globals=globalns, locals=localns,
|
|
type_params=type_params, owner=owner,
|
|
_recursive_guard=recursive_guard, format=format)
|
|
if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)):
|
|
if isinstance(t, GenericAlias):
|
|
args = tuple(
|
|
_make_forward_ref(arg) if isinstance(arg, str) else arg
|
|
for arg in t.__args__
|
|
)
|
|
is_unpacked = t.__unpacked__
|
|
if _should_unflatten_callable_args(t, args):
|
|
t = t.__origin__[(args[:-1], args[-1])]
|
|
else:
|
|
t = t.__origin__[args]
|
|
if is_unpacked:
|
|
t = Unpack[t]
|
|
|
|
ev_args = tuple(
|
|
_eval_type(
|
|
a, globalns, localns, type_params, recursive_guard=recursive_guard,
|
|
format=format, owner=owner,
|
|
)
|
|
for a in t.__args__
|
|
)
|
|
if ev_args == t.__args__:
|
|
return t
|
|
if isinstance(t, GenericAlias):
|
|
return GenericAlias(t.__origin__, ev_args)
|
|
if isinstance(t, types.UnionType):
|
|
return functools.reduce(operator.or_, ev_args)
|
|
else:
|
|
return t.copy_with(ev_args)
|
|
return t
|
|
|
|
|
|
class _Final:
|
|
"""Mixin to prohibit subclassing."""
|
|
|
|
__slots__ = ('__weakref__',)
|
|
|
|
def __init_subclass__(cls, /, *args, **kwds):
|
|
if '_root' not in kwds:
|
|
raise TypeError("Cannot subclass special typing classes")
|
|
|
|
|
|
class _NotIterable:
|
|
"""Mixin to prevent iteration, without being compatible with Iterable.
|
|
|
|
That is, we could do::
|
|
|
|
def __iter__(self): raise TypeError()
|
|
|
|
But this would make users of this mixin duck type-compatible with
|
|
collections.abc.Iterable - isinstance(foo, Iterable) would be True.
|
|
|
|
Luckily, we can instead prevent iteration by setting __iter__ to None, which
|
|
is treated specially.
|
|
"""
|
|
|
|
__slots__ = ()
|
|
__iter__ = None
|
|
|
|
|
|
# Internal indicator of special typing constructs.
|
|
# See __doc__ instance attribute for specific docs.
|
|
class _SpecialForm(_Final, _NotIterable, _root=True):
|
|
__slots__ = ('_name', '__doc__', '_getitem')
|
|
|
|
def __init__(self, getitem):
|
|
self._getitem = getitem
|
|
self._name = getitem.__name__
|
|
self.__doc__ = getitem.__doc__
|
|
|
|
def __getattr__(self, item):
|
|
if item in {'__name__', '__qualname__'}:
|
|
return self._name
|
|
|
|
raise AttributeError(item)
|
|
|
|
def __mro_entries__(self, bases):
|
|
raise TypeError(f"Cannot subclass {self!r}")
|
|
|
|
def __repr__(self):
|
|
return 'typing.' + self._name
|
|
|
|
def __reduce__(self):
|
|
return self._name
|
|
|
|
def __call__(self, *args, **kwds):
|
|
raise TypeError(f"Cannot instantiate {self!r}")
|
|
|
|
def __or__(self, other):
|
|
return Union[self, other]
|
|
|
|
def __ror__(self, other):
|
|
return Union[other, self]
|
|
|
|
def __instancecheck__(self, obj):
|
|
raise TypeError(f"{self} cannot be used with isinstance()")
|
|
|
|
def __subclasscheck__(self, cls):
|
|
raise TypeError(f"{self} cannot be used with issubclass()")
|
|
|
|
@_tp_cache
|
|
def __getitem__(self, parameters):
|
|
return self._getitem(self, parameters)
|
|
|
|
|
|
class _TypedCacheSpecialForm(_SpecialForm, _root=True):
|
|
def __getitem__(self, parameters):
|
|
if not isinstance(parameters, tuple):
|
|
parameters = (parameters,)
|
|
return self._getitem(self, *parameters)
|
|
|
|
|
|
class _AnyMeta(type):
|
|
def __instancecheck__(self, obj):
|
|
if self is Any:
|
|
raise TypeError("typing.Any cannot be used with isinstance()")
|
|
return super().__instancecheck__(obj)
|
|
|
|
def __repr__(self):
|
|
if self is Any:
|
|
return "typing.Any"
|
|
return super().__repr__() # respect to subclasses
|
|
|
|
|
|
class Any(metaclass=_AnyMeta):
|
|
"""Special type indicating an unconstrained type.
|
|
|
|
- Any is compatible with every type.
|
|
- Any assumed to have all methods.
|
|
- All values assumed to be instances of Any.
|
|
|
|
Note that all the above statements are true from the point of view of
|
|
static type checkers. At runtime, Any should not be used with instance
|
|
checks.
|
|
"""
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
if cls is Any:
|
|
raise TypeError("Any cannot be instantiated")
|
|
return super().__new__(cls)
|
|
|
|
|
|
@_SpecialForm
|
|
def NoReturn(self, parameters):
|
|
"""Special type indicating functions that never return.
|
|
|
|
Example::
|
|
|
|
from typing import NoReturn
|
|
|
|
def stop() -> NoReturn:
|
|
raise Exception('no way')
|
|
|
|
NoReturn can also be used as a bottom type, a type that
|
|
has no values. Starting in Python 3.11, the Never type should
|
|
be used for this concept instead. Type checkers should treat the two
|
|
equivalently.
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
# This is semantically identical to NoReturn, but it is implemented
|
|
# separately so that type checkers can distinguish between the two
|
|
# if they want.
|
|
@_SpecialForm
|
|
def Never(self, parameters):
|
|
"""The bottom type, a type that has no members.
|
|
|
|
This can be used to define a function that should never be
|
|
called, or a function that never returns::
|
|
|
|
from typing import Never
|
|
|
|
def never_call_me(arg: Never) -> None:
|
|
pass
|
|
|
|
def int_or_str(arg: int | str) -> None:
|
|
never_call_me(arg) # type checker error
|
|
match arg:
|
|
case int():
|
|
print("It's an int")
|
|
case str():
|
|
print("It's a str")
|
|
case _:
|
|
never_call_me(arg) # OK, arg is of type Never
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def Self(self, parameters):
|
|
"""Used to spell the type of "self" in classes.
|
|
|
|
Example::
|
|
|
|
from typing import Self
|
|
|
|
class Foo:
|
|
def return_self(self) -> Self:
|
|
...
|
|
return self
|
|
|
|
This is especially useful for:
|
|
- classmethods that are used as alternative constructors
|
|
- annotating an `__enter__` method which returns self
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def LiteralString(self, parameters):
|
|
"""Represents an arbitrary literal string.
|
|
|
|
Example::
|
|
|
|
from typing import LiteralString
|
|
|
|
def run_query(sql: LiteralString) -> None:
|
|
...
|
|
|
|
def caller(arbitrary_string: str, literal_string: LiteralString) -> None:
|
|
run_query("SELECT * FROM students") # OK
|
|
run_query(literal_string) # OK
|
|
run_query("SELECT * FROM " + literal_string) # OK
|
|
run_query(arbitrary_string) # type checker error
|
|
run_query( # type checker error
|
|
f"SELECT * FROM students WHERE name = {arbitrary_string}"
|
|
)
|
|
|
|
Only string literals and other LiteralStrings are compatible
|
|
with LiteralString. This provides a tool to help prevent
|
|
security issues such as SQL injection.
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def ClassVar(self, parameters):
|
|
"""Special type construct to mark class variables.
|
|
|
|
An annotation wrapped in ClassVar indicates that a given
|
|
attribute is intended to be used as a class variable and
|
|
should not be set on instances of that class.
|
|
|
|
Usage::
|
|
|
|
class Starship:
|
|
stats: ClassVar[dict[str, int]] = {} # class variable
|
|
damage: int = 10 # instance variable
|
|
|
|
ClassVar accepts only types and cannot be further subscribed.
|
|
|
|
Note that ClassVar is not a class itself, and should not
|
|
be used with isinstance() or issubclass().
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.', allow_special_forms=True)
|
|
return _GenericAlias(self, (item,))
|
|
|
|
@_SpecialForm
|
|
def Final(self, parameters):
|
|
"""Special typing construct to indicate final names to type checkers.
|
|
|
|
A final name cannot be re-assigned or overridden in a subclass.
|
|
|
|
For example::
|
|
|
|
MAX_SIZE: Final = 9000
|
|
MAX_SIZE += 1 # Error reported by type checker
|
|
|
|
class Connection:
|
|
TIMEOUT: Final[int] = 10
|
|
|
|
class FastConnector(Connection):
|
|
TIMEOUT = 1 # Error reported by type checker
|
|
|
|
There is no runtime checking of these properties.
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.', allow_special_forms=True)
|
|
return _GenericAlias(self, (item,))
|
|
|
|
@_SpecialForm
|
|
def Union(self, parameters):
|
|
"""Union type; Union[X, Y] means either X or Y.
|
|
|
|
On Python 3.10 and higher, the | operator
|
|
can also be used to denote unions;
|
|
X | Y means the same thing to the type checker as Union[X, Y].
|
|
|
|
To define a union, use e.g. Union[int, str]. Details:
|
|
- The arguments must be types and there must be at least one.
|
|
- None as an argument is a special case and is replaced by
|
|
type(None).
|
|
- Unions of unions are flattened, e.g.::
|
|
|
|
assert Union[Union[int, str], float] == Union[int, str, float]
|
|
|
|
- Unions of a single argument vanish, e.g.::
|
|
|
|
assert Union[int] == int # The constructor actually returns int
|
|
|
|
- Redundant arguments are skipped, e.g.::
|
|
|
|
assert Union[int, str, int] == Union[int, str]
|
|
|
|
- When comparing unions, the argument order is ignored, e.g.::
|
|
|
|
assert Union[int, str] == Union[str, int]
|
|
|
|
- You cannot subclass or instantiate a union.
|
|
- You can use Optional[X] as a shorthand for Union[X, None].
|
|
"""
|
|
if parameters == ():
|
|
raise TypeError("Cannot take a Union of no types.")
|
|
if not isinstance(parameters, tuple):
|
|
parameters = (parameters,)
|
|
msg = "Union[arg, ...]: each arg must be a type."
|
|
parameters = tuple(_type_check(p, msg) for p in parameters)
|
|
parameters = _remove_dups_flatten(parameters)
|
|
if len(parameters) == 1:
|
|
return parameters[0]
|
|
if len(parameters) == 2 and type(None) in parameters:
|
|
return _UnionGenericAlias(self, parameters, name="Optional")
|
|
return _UnionGenericAlias(self, parameters)
|
|
|
|
def _make_union(left, right):
|
|
"""Used from the C implementation of TypeVar.
|
|
|
|
TypeVar.__or__ calls this instead of returning types.UnionType
|
|
because we want to allow unions between TypeVars and strings
|
|
(forward references).
|
|
"""
|
|
return Union[left, right]
|
|
|
|
@_SpecialForm
|
|
def Optional(self, parameters):
|
|
"""Optional[X] is equivalent to Union[X, None]."""
|
|
arg = _type_check(parameters, f"{self} requires a single type.")
|
|
return Union[arg, type(None)]
|
|
|
|
@_TypedCacheSpecialForm
|
|
@_tp_cache(typed=True)
|
|
def Literal(self, *parameters):
|
|
"""Special typing form to define literal types (a.k.a. value types).
|
|
|
|
This form can be used to indicate to type checkers that the corresponding
|
|
variable or function parameter has a value equivalent to the provided
|
|
literal (or one of several literals)::
|
|
|
|
def validate_simple(data: Any) -> Literal[True]: # always returns True
|
|
...
|
|
|
|
MODE = Literal['r', 'rb', 'w', 'wb']
|
|
def open_helper(file: str, mode: MODE) -> str:
|
|
...
|
|
|
|
open_helper('/some/path', 'r') # Passes type check
|
|
open_helper('/other/path', 'typo') # Error in type checker
|
|
|
|
Literal[...] cannot be subclassed. At runtime, an arbitrary value
|
|
is allowed as type argument to Literal[...], but type checkers may
|
|
impose restrictions.
|
|
"""
|
|
# There is no '_type_check' call because arguments to Literal[...] are
|
|
# values, not types.
|
|
parameters = _flatten_literal_params(parameters)
|
|
|
|
try:
|
|
parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters))))
|
|
except TypeError: # unhashable parameters
|
|
pass
|
|
|
|
return _LiteralGenericAlias(self, parameters)
|
|
|
|
|
|
@_SpecialForm
|
|
def TypeAlias(self, parameters):
|
|
"""Special form for marking type aliases.
|
|
|
|
Use TypeAlias to indicate that an assignment should
|
|
be recognized as a proper type alias definition by type
|
|
checkers.
|
|
|
|
For example::
|
|
|
|
Predicate: TypeAlias = Callable[..., bool]
|
|
|
|
It's invalid when used anywhere except as in the example above.
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def Concatenate(self, parameters):
|
|
"""Special form for annotating higher-order functions.
|
|
|
|
``Concatenate`` can be used in conjunction with ``ParamSpec`` and
|
|
``Callable`` to represent a higher-order function which adds, removes or
|
|
transforms the parameters of a callable.
|
|
|
|
For example::
|
|
|
|
Callable[Concatenate[int, P], int]
|
|
|
|
See PEP 612 for detailed information.
|
|
"""
|
|
if parameters == ():
|
|
raise TypeError("Cannot take a Concatenate of no types.")
|
|
if not isinstance(parameters, tuple):
|
|
parameters = (parameters,)
|
|
if not (parameters[-1] is ... or isinstance(parameters[-1], ParamSpec)):
|
|
raise TypeError("The last parameter to Concatenate should be a "
|
|
"ParamSpec variable or ellipsis.")
|
|
msg = "Concatenate[arg, ...]: each arg must be a type."
|
|
parameters = (*(_type_check(p, msg) for p in parameters[:-1]), parameters[-1])
|
|
return _ConcatenateGenericAlias(self, parameters)
|
|
|
|
|
|
@_SpecialForm
|
|
def TypeGuard(self, parameters):
|
|
"""Special typing construct for marking user-defined type predicate functions.
|
|
|
|
``TypeGuard`` can be used to annotate the return type of a user-defined
|
|
type predicate function. ``TypeGuard`` only accepts a single type argument.
|
|
At runtime, functions marked this way should return a boolean.
|
|
|
|
``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
|
|
type checkers to determine a more precise type of an expression within a
|
|
program's code flow. Usually type narrowing is done by analyzing
|
|
conditional code flow and applying the narrowing to a block of code. The
|
|
conditional expression here is sometimes referred to as a "type predicate".
|
|
|
|
Sometimes it would be convenient to use a user-defined boolean function
|
|
as a type predicate. Such a function should use ``TypeGuard[...]`` or
|
|
``TypeIs[...]`` as its return type to alert static type checkers to
|
|
this intention. ``TypeGuard`` should be used over ``TypeIs`` when narrowing
|
|
from an incompatible type (e.g., ``list[object]`` to ``list[int]``) or when
|
|
the function does not return ``True`` for all instances of the narrowed type.
|
|
|
|
Using ``-> TypeGuard[NarrowedType]`` tells the static type checker that
|
|
for a given function:
|
|
|
|
1. The return value is a boolean.
|
|
2. If the return value is ``True``, the type of its argument
|
|
is ``NarrowedType``.
|
|
|
|
For example::
|
|
|
|
def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
|
|
'''Determines whether all objects in the list are strings'''
|
|
return all(isinstance(x, str) for x in val)
|
|
|
|
def func1(val: list[object]):
|
|
if is_str_list(val):
|
|
# Type of ``val`` is narrowed to ``list[str]``.
|
|
print(" ".join(val))
|
|
else:
|
|
# Type of ``val`` remains as ``list[object]``.
|
|
print("Not a list of strings!")
|
|
|
|
Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
|
|
form of ``TypeA`` (it can even be a wider form) and this may lead to
|
|
type-unsafe results. The main reason is to allow for things like
|
|
narrowing ``list[object]`` to ``list[str]`` even though the latter is not
|
|
a subtype of the former, since ``list`` is invariant. The responsibility of
|
|
writing type-safe type predicates is left to the user.
|
|
|
|
``TypeGuard`` also works with type variables. For more information, see
|
|
PEP 647 (User-Defined Type Guards).
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
@_SpecialForm
|
|
def TypeIs(self, parameters):
|
|
"""Special typing construct for marking user-defined type predicate functions.
|
|
|
|
``TypeIs`` can be used to annotate the return type of a user-defined
|
|
type predicate function. ``TypeIs`` only accepts a single type argument.
|
|
At runtime, functions marked this way should return a boolean and accept
|
|
at least one argument.
|
|
|
|
``TypeIs`` aims to benefit *type narrowing* -- a technique used by static
|
|
type checkers to determine a more precise type of an expression within a
|
|
program's code flow. Usually type narrowing is done by analyzing
|
|
conditional code flow and applying the narrowing to a block of code. The
|
|
conditional expression here is sometimes referred to as a "type predicate".
|
|
|
|
Sometimes it would be convenient to use a user-defined boolean function
|
|
as a type predicate. Such a function should use ``TypeIs[...]`` or
|
|
``TypeGuard[...]`` as its return type to alert static type checkers to
|
|
this intention. ``TypeIs`` usually has more intuitive behavior than
|
|
``TypeGuard``, but it cannot be used when the input and output types
|
|
are incompatible (e.g., ``list[object]`` to ``list[int]``) or when the
|
|
function does not return ``True`` for all instances of the narrowed type.
|
|
|
|
Using ``-> TypeIs[NarrowedType]`` tells the static type checker that for
|
|
a given function:
|
|
|
|
1. The return value is a boolean.
|
|
2. If the return value is ``True``, the type of its argument
|
|
is the intersection of the argument's original type and
|
|
``NarrowedType``.
|
|
3. If the return value is ``False``, the type of its argument
|
|
is narrowed to exclude ``NarrowedType``.
|
|
|
|
For example::
|
|
|
|
from typing import assert_type, final, TypeIs
|
|
|
|
class Parent: pass
|
|
class Child(Parent): pass
|
|
@final
|
|
class Unrelated: pass
|
|
|
|
def is_parent(val: object) -> TypeIs[Parent]:
|
|
return isinstance(val, Parent)
|
|
|
|
def run(arg: Child | Unrelated):
|
|
if is_parent(arg):
|
|
# Type of ``arg`` is narrowed to the intersection
|
|
# of ``Parent`` and ``Child``, which is equivalent to
|
|
# ``Child``.
|
|
assert_type(arg, Child)
|
|
else:
|
|
# Type of ``arg`` is narrowed to exclude ``Parent``,
|
|
# so only ``Unrelated`` is left.
|
|
assert_type(arg, Unrelated)
|
|
|
|
The type inside ``TypeIs`` must be consistent with the type of the
|
|
function's argument; if it is not, static type checkers will raise
|
|
an error. An incorrectly written ``TypeIs`` function can lead to
|
|
unsound behavior in the type system; it is the user's responsibility
|
|
to write such functions in a type-safe manner.
|
|
|
|
``TypeIs`` also works with type variables. For more information, see
|
|
PEP 742 (Narrowing types with ``TypeIs``).
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
def _make_forward_ref(code, **kwargs):
|
|
forward_ref = ForwardRef(code, **kwargs)
|
|
# For compatibility, eagerly compile the forwardref's code.
|
|
forward_ref.__forward_code__
|
|
return forward_ref
|
|
|
|
|
|
def evaluate_forward_ref(
|
|
forward_ref,
|
|
*,
|
|
owner=None,
|
|
globals=None,
|
|
locals=None,
|
|
type_params=None,
|
|
format=annotationlib.Format.VALUE,
|
|
_recursive_guard=frozenset(),
|
|
):
|
|
"""Evaluate a forward reference as a type hint.
|
|
|
|
This is similar to calling the ForwardRef.evaluate() method,
|
|
but unlike that method, evaluate_forward_ref() also:
|
|
|
|
* Recursively evaluates forward references nested within the type hint.
|
|
* Rejects certain objects that are not valid type hints.
|
|
* Replaces type hints that evaluate to None with types.NoneType.
|
|
* Supports the *FORWARDREF* and *STRING* formats.
|
|
|
|
*forward_ref* must be an instance of ForwardRef. *owner*, if given,
|
|
should be the object that holds the annotations that the forward reference
|
|
derived from, such as a module, class object, or function. It is used to
|
|
infer the namespaces to use for looking up names. *globals* and *locals*
|
|
can also be explicitly given to provide the global and local namespaces.
|
|
*type_params* is a tuple of type parameters that are in scope when
|
|
evaluating the forward reference. This parameter must be provided (though
|
|
it may be an empty tuple) if *owner* is not given and the forward reference
|
|
does not already have an owner set. *format* specifies the format of the
|
|
annotation and is a member of the annotationlib.Format enum.
|
|
|
|
"""
|
|
if type_params is _sentinel:
|
|
_deprecation_warning_for_no_type_params_passed("typing.evaluate_forward_ref")
|
|
type_params = ()
|
|
if format == annotationlib.Format.STRING:
|
|
return forward_ref.__forward_arg__
|
|
if forward_ref.__forward_arg__ in _recursive_guard:
|
|
return forward_ref
|
|
|
|
try:
|
|
value = forward_ref.evaluate(globals=globals, locals=locals,
|
|
type_params=type_params, owner=owner)
|
|
except NameError:
|
|
if format == annotationlib.Format.FORWARDREF:
|
|
return forward_ref
|
|
else:
|
|
raise
|
|
|
|
type_ = _type_check(
|
|
value,
|
|
"Forward references must evaluate to types.",
|
|
is_argument=forward_ref.__forward_is_argument__,
|
|
allow_special_forms=forward_ref.__forward_is_class__,
|
|
)
|
|
return _eval_type(
|
|
type_,
|
|
globals,
|
|
locals,
|
|
type_params,
|
|
recursive_guard=_recursive_guard | {forward_ref.__forward_arg__},
|
|
format=format,
|
|
owner=owner,
|
|
)
|
|
|
|
|
|
def _is_unpacked_typevartuple(x: Any) -> bool:
|
|
return ((not isinstance(x, type)) and
|
|
getattr(x, '__typing_is_unpacked_typevartuple__', False))
|
|
|
|
|
|
def _is_typevar_like(x: Any) -> bool:
|
|
return isinstance(x, (TypeVar, ParamSpec)) or _is_unpacked_typevartuple(x)
|
|
|
|
|
|
def _typevar_subst(self, arg):
|
|
msg = "Parameters to generic types must be types."
|
|
arg = _type_check(arg, msg, is_argument=True)
|
|
if ((isinstance(arg, _GenericAlias) and arg.__origin__ is Unpack) or
|
|
(isinstance(arg, GenericAlias) and getattr(arg, '__unpacked__', False))):
|
|
raise TypeError(f"{arg} is not valid as type argument")
|
|
return arg
|
|
|
|
|
|
def _typevartuple_prepare_subst(self, alias, args):
|
|
params = alias.__parameters__
|
|
typevartuple_index = params.index(self)
|
|
for param in params[typevartuple_index + 1:]:
|
|
if isinstance(param, TypeVarTuple):
|
|
raise TypeError(f"More than one TypeVarTuple parameter in {alias}")
|
|
|
|
alen = len(args)
|
|
plen = len(params)
|
|
left = typevartuple_index
|
|
right = plen - typevartuple_index - 1
|
|
var_tuple_index = None
|
|
fillarg = None
|
|
for k, arg in enumerate(args):
|
|
if not isinstance(arg, type):
|
|
subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
|
|
if subargs and len(subargs) == 2 and subargs[-1] is ...:
|
|
if var_tuple_index is not None:
|
|
raise TypeError("More than one unpacked arbitrary-length tuple argument")
|
|
var_tuple_index = k
|
|
fillarg = subargs[0]
|
|
if var_tuple_index is not None:
|
|
left = min(left, var_tuple_index)
|
|
right = min(right, alen - var_tuple_index - 1)
|
|
elif left + right > alen:
|
|
raise TypeError(f"Too few arguments for {alias};"
|
|
f" actual {alen}, expected at least {plen-1}")
|
|
if left == alen - right and self.has_default():
|
|
replacement = _unpack_args(self.__default__)
|
|
else:
|
|
replacement = args[left: alen - right]
|
|
|
|
return (
|
|
*args[:left],
|
|
*([fillarg]*(typevartuple_index - left)),
|
|
replacement,
|
|
*([fillarg]*(plen - right - left - typevartuple_index - 1)),
|
|
*args[alen - right:],
|
|
)
|
|
|
|
|
|
def _paramspec_subst(self, arg):
|
|
if isinstance(arg, (list, tuple)):
|
|
arg = tuple(_type_check(a, "Expected a type.") for a in arg)
|
|
elif not _is_param_expr(arg):
|
|
raise TypeError(f"Expected a list of types, an ellipsis, "
|
|
f"ParamSpec, or Concatenate. Got {arg}")
|
|
return arg
|
|
|
|
|
|
def _paramspec_prepare_subst(self, alias, args):
|
|
params = alias.__parameters__
|
|
i = params.index(self)
|
|
if i == len(args) and self.has_default():
|
|
args = [*args, self.__default__]
|
|
if i >= len(args):
|
|
raise TypeError(f"Too few arguments for {alias}")
|
|
# Special case where Z[[int, str, bool]] == Z[int, str, bool] in PEP 612.
|
|
if len(params) == 1 and not _is_param_expr(args[0]):
|
|
assert i == 0
|
|
args = (args,)
|
|
# Convert lists to tuples to help other libraries cache the results.
|
|
elif isinstance(args[i], list):
|
|
args = (*args[:i], tuple(args[i]), *args[i+1:])
|
|
return args
|
|
|
|
|
|
@_tp_cache
|
|
def _generic_class_getitem(cls, args):
|
|
"""Parameterizes a generic class.
|
|
|
|
At least, parameterizing a generic class is the *main* thing this method
|
|
does. For example, for some generic class `Foo`, this is called when we
|
|
do `Foo[int]` - there, with `cls=Foo` and `args=int`.
|
|
|
|
However, note that this method is also called when defining generic
|
|
classes in the first place with `class Foo(Generic[T]): ...`.
|
|
"""
|
|
if not isinstance(args, tuple):
|
|
args = (args,)
|
|
|
|
args = tuple(_type_convert(p) for p in args)
|
|
is_generic_or_protocol = cls in (Generic, Protocol)
|
|
|
|
if is_generic_or_protocol:
|
|
# Generic and Protocol can only be subscripted with unique type variables.
|
|
if not args:
|
|
raise TypeError(
|
|
f"Parameter list to {cls.__qualname__}[...] cannot be empty"
|
|
)
|
|
if not all(_is_typevar_like(p) for p in args):
|
|
raise TypeError(
|
|
f"Parameters to {cls.__name__}[...] must all be type variables "
|
|
f"or parameter specification variables.")
|
|
if len(set(args)) != len(args):
|
|
raise TypeError(
|
|
f"Parameters to {cls.__name__}[...] must all be unique")
|
|
else:
|
|
# Subscripting a regular Generic subclass.
|
|
for param in cls.__parameters__:
|
|
prepare = getattr(param, '__typing_prepare_subst__', None)
|
|
if prepare is not None:
|
|
args = prepare(cls, args)
|
|
_check_generic_specialization(cls, args)
|
|
|
|
new_args = []
|
|
for param, new_arg in zip(cls.__parameters__, args):
|
|
if isinstance(param, TypeVarTuple):
|
|
new_args.extend(new_arg)
|
|
else:
|
|
new_args.append(new_arg)
|
|
args = tuple(new_args)
|
|
|
|
return _GenericAlias(cls, args)
|
|
|
|
|
|
def _generic_init_subclass(cls, *args, **kwargs):
|
|
super(Generic, cls).__init_subclass__(*args, **kwargs)
|
|
tvars = []
|
|
if '__orig_bases__' in cls.__dict__:
|
|
error = Generic in cls.__orig_bases__
|
|
else:
|
|
error = (Generic in cls.__bases__ and
|
|
cls.__name__ != 'Protocol' and
|
|
type(cls) != _TypedDictMeta)
|
|
if error:
|
|
raise TypeError("Cannot inherit from plain Generic")
|
|
if '__orig_bases__' in cls.__dict__:
|
|
tvars = _collect_type_parameters(cls.__orig_bases__)
|
|
# Look for Generic[T1, ..., Tn].
|
|
# If found, tvars must be a subset of it.
|
|
# If not found, tvars is it.
|
|
# Also check for and reject plain Generic,
|
|
# and reject multiple Generic[...].
|
|
gvars = None
|
|
for base in cls.__orig_bases__:
|
|
if (isinstance(base, _GenericAlias) and
|
|
base.__origin__ is Generic):
|
|
if gvars is not None:
|
|
raise TypeError(
|
|
"Cannot inherit from Generic[...] multiple times.")
|
|
gvars = base.__parameters__
|
|
if gvars is not None:
|
|
tvarset = set(tvars)
|
|
gvarset = set(gvars)
|
|
if not tvarset <= gvarset:
|
|
s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
|
|
s_args = ', '.join(str(g) for g in gvars)
|
|
raise TypeError(f"Some type variables ({s_vars}) are"
|
|
f" not listed in Generic[{s_args}]")
|
|
tvars = gvars
|
|
cls.__parameters__ = tuple(tvars)
|
|
|
|
|
|
def _is_dunder(attr):
|
|
return attr.startswith('__') and attr.endswith('__')
|
|
|
|
class _BaseGenericAlias(_Final, _root=True):
|
|
"""The central part of the internal API.
|
|
|
|
This represents a generic version of type 'origin' with type arguments 'params'.
|
|
There are two kind of these aliases: user defined and special. The special ones
|
|
are wrappers around builtin collections and ABCs in collections.abc. These must
|
|
have 'name' always set. If 'inst' is False, then the alias can't be instantiated;
|
|
this is used by e.g. typing.List and typing.Dict.
|
|
"""
|
|
|
|
def __init__(self, origin, *, inst=True, name=None):
|
|
self._inst = inst
|
|
self._name = name
|
|
self.__origin__ = origin
|
|
self.__slots__ = None # This is not documented.
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
if not self._inst:
|
|
raise TypeError(f"Type {self._name} cannot be instantiated; "
|
|
f"use {self.__origin__.__name__}() instead")
|
|
result = self.__origin__(*args, **kwargs)
|
|
try:
|
|
result.__orig_class__ = self
|
|
# Some objects raise TypeError (or something even more exotic)
|
|
# if you try to set attributes on them; we guard against that here
|
|
except Exception:
|
|
pass
|
|
return result
|
|
|
|
def __mro_entries__(self, bases):
|
|
res = []
|
|
if self.__origin__ not in bases:
|
|
res.append(self.__origin__)
|
|
|
|
# Check if any base that occurs after us in `bases` is either itself a
|
|
# subclass of Generic, or something which will add a subclass of Generic
|
|
# to `__bases__` via its `__mro_entries__`. If not, add Generic
|
|
# ourselves. The goal is to ensure that Generic (or a subclass) will
|
|
# appear exactly once in the final bases tuple. If we let it appear
|
|
# multiple times, we risk "can't form a consistent MRO" errors.
|
|
i = bases.index(self)
|
|
for b in bases[i+1:]:
|
|
if isinstance(b, _BaseGenericAlias):
|
|
break
|
|
if not isinstance(b, type):
|
|
meth = getattr(b, "__mro_entries__", None)
|
|
new_bases = meth(bases) if meth else None
|
|
if (
|
|
isinstance(new_bases, tuple) and
|
|
any(
|
|
isinstance(b2, type) and issubclass(b2, Generic)
|
|
for b2 in new_bases
|
|
)
|
|
):
|
|
break
|
|
elif issubclass(b, Generic):
|
|
break
|
|
else:
|
|
res.append(Generic)
|
|
return tuple(res)
|
|
|
|
def __getattr__(self, attr):
|
|
if attr in {'__name__', '__qualname__'}:
|
|
return self._name or self.__origin__.__name__
|
|
|
|
# We are careful for copy and pickle.
|
|
# Also for simplicity we don't relay any dunder names
|
|
if '__origin__' in self.__dict__ and not _is_dunder(attr):
|
|
return getattr(self.__origin__, attr)
|
|
raise AttributeError(attr)
|
|
|
|
def __setattr__(self, attr, val):
|
|
if _is_dunder(attr) or attr in {'_name', '_inst', '_nparams', '_defaults'}:
|
|
super().__setattr__(attr, val)
|
|
else:
|
|
setattr(self.__origin__, attr, val)
|
|
|
|
def __instancecheck__(self, obj):
|
|
return self.__subclasscheck__(type(obj))
|
|
|
|
def __subclasscheck__(self, cls):
|
|
raise TypeError("Subscripted generics cannot be used with"
|
|
" class and instance checks")
|
|
|
|
def __dir__(self):
|
|
return list(set(super().__dir__()
|
|
+ [attr for attr in dir(self.__origin__) if not _is_dunder(attr)]))
|
|
|
|
|
|
# Special typing constructs Union, Optional, Generic, Callable and Tuple
|
|
# use three special attributes for internal bookkeeping of generic types:
|
|
# * __parameters__ is a tuple of unique free type parameters of a generic
|
|
# type, for example, Dict[T, T].__parameters__ == (T,);
|
|
# * __origin__ keeps a reference to a type that was subscripted,
|
|
# e.g., Union[T, int].__origin__ == Union, or the non-generic version of
|
|
# the type.
|
|
# * __args__ is a tuple of all arguments used in subscripting,
|
|
# e.g., Dict[T, int].__args__ == (T, int).
|
|
|
|
|
|
class _GenericAlias(_BaseGenericAlias, _root=True):
|
|
# The type of parameterized generics.
|
|
#
|
|
# That is, for example, `type(List[int])` is `_GenericAlias`.
|
|
#
|
|
# Objects which are instances of this class include:
|
|
# * Parameterized container types, e.g. `Tuple[int]`, `List[int]`.
|
|
# * Note that native container types, e.g. `tuple`, `list`, use
|
|
# `types.GenericAlias` instead.
|
|
# * Parameterized classes:
|
|
# class C[T]: pass
|
|
# # C[int] is a _GenericAlias
|
|
# * `Callable` aliases, generic `Callable` aliases, and
|
|
# parameterized `Callable` aliases:
|
|
# T = TypeVar('T')
|
|
# # _CallableGenericAlias inherits from _GenericAlias.
|
|
# A = Callable[[], None] # _CallableGenericAlias
|
|
# B = Callable[[T], None] # _CallableGenericAlias
|
|
# C = B[int] # _CallableGenericAlias
|
|
# * Parameterized `Final`, `ClassVar`, `TypeGuard`, and `TypeIs`:
|
|
# # All _GenericAlias
|
|
# Final[int]
|
|
# ClassVar[float]
|
|
# TypeGuard[bool]
|
|
# TypeIs[range]
|
|
|
|
def __init__(self, origin, args, *, inst=True, name=None):
|
|
super().__init__(origin, inst=inst, name=name)
|
|
if not isinstance(args, tuple):
|
|
args = (args,)
|
|
self.__args__ = tuple(... if a is _TypingEllipsis else
|
|
a for a in args)
|
|
enforce_default_ordering = origin in (Generic, Protocol)
|
|
self.__parameters__ = _collect_type_parameters(
|
|
args,
|
|
enforce_default_ordering=enforce_default_ordering,
|
|
)
|
|
if not name:
|
|
self.__module__ = origin.__module__
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _GenericAlias):
|
|
return NotImplemented
|
|
return (self.__origin__ == other.__origin__
|
|
and self.__args__ == other.__args__)
|
|
|
|
def __hash__(self):
|
|
return hash((self.__origin__, self.__args__))
|
|
|
|
def __or__(self, right):
|
|
return Union[self, right]
|
|
|
|
def __ror__(self, left):
|
|
return Union[left, self]
|
|
|
|
@_tp_cache
|
|
def __getitem__(self, args):
|
|
# Parameterizes an already-parameterized object.
|
|
#
|
|
# For example, we arrive here doing something like:
|
|
# T1 = TypeVar('T1')
|
|
# T2 = TypeVar('T2')
|
|
# T3 = TypeVar('T3')
|
|
# class A(Generic[T1]): pass
|
|
# B = A[T2] # B is a _GenericAlias
|
|
# C = B[T3] # Invokes _GenericAlias.__getitem__
|
|
#
|
|
# We also arrive here when parameterizing a generic `Callable` alias:
|
|
# T = TypeVar('T')
|
|
# C = Callable[[T], None]
|
|
# C[int] # Invokes _GenericAlias.__getitem__
|
|
|
|
if self.__origin__ in (Generic, Protocol):
|
|
# Can't subscript Generic[...] or Protocol[...].
|
|
raise TypeError(f"Cannot subscript already-subscripted {self}")
|
|
if not self.__parameters__:
|
|
raise TypeError(f"{self} is not a generic class")
|
|
|
|
# Preprocess `args`.
|
|
if not isinstance(args, tuple):
|
|
args = (args,)
|
|
args = _unpack_args(*(_type_convert(p) for p in args))
|
|
new_args = self._determine_new_args(args)
|
|
r = self.copy_with(new_args)
|
|
return r
|
|
|
|
def _determine_new_args(self, args):
|
|
# Determines new __args__ for __getitem__.
|
|
#
|
|
# For example, suppose we had:
|
|
# T1 = TypeVar('T1')
|
|
# T2 = TypeVar('T2')
|
|
# class A(Generic[T1, T2]): pass
|
|
# T3 = TypeVar('T3')
|
|
# B = A[int, T3]
|
|
# C = B[str]
|
|
# `B.__args__` is `(int, T3)`, so `C.__args__` should be `(int, str)`.
|
|
# Unfortunately, this is harder than it looks, because if `T3` is
|
|
# anything more exotic than a plain `TypeVar`, we need to consider
|
|
# edge cases.
|
|
|
|
params = self.__parameters__
|
|
# In the example above, this would be {T3: str}
|
|
for param in params:
|
|
prepare = getattr(param, '__typing_prepare_subst__', None)
|
|
if prepare is not None:
|
|
args = prepare(self, args)
|
|
alen = len(args)
|
|
plen = len(params)
|
|
if alen != plen:
|
|
raise TypeError(f"Too {'many' if alen > plen else 'few'} arguments for {self};"
|
|
f" actual {alen}, expected {plen}")
|
|
new_arg_by_param = dict(zip(params, args))
|
|
return tuple(self._make_substitution(self.__args__, new_arg_by_param))
|
|
|
|
def _make_substitution(self, args, new_arg_by_param):
|
|
"""Create a list of new type arguments."""
|
|
new_args = []
|
|
for old_arg in args:
|
|
if isinstance(old_arg, type):
|
|
new_args.append(old_arg)
|
|
continue
|
|
|
|
substfunc = getattr(old_arg, '__typing_subst__', None)
|
|
if substfunc:
|
|
new_arg = substfunc(new_arg_by_param[old_arg])
|
|
else:
|
|
subparams = getattr(old_arg, '__parameters__', ())
|
|
if not subparams:
|
|
new_arg = old_arg
|
|
else:
|
|
subargs = []
|
|
for x in subparams:
|
|
if isinstance(x, TypeVarTuple):
|
|
subargs.extend(new_arg_by_param[x])
|
|
else:
|
|
subargs.append(new_arg_by_param[x])
|
|
new_arg = old_arg[tuple(subargs)]
|
|
|
|
if self.__origin__ == collections.abc.Callable and isinstance(new_arg, tuple):
|
|
# Consider the following `Callable`.
|
|
# C = Callable[[int], str]
|
|
# Here, `C.__args__` should be (int, str) - NOT ([int], str).
|
|
# That means that if we had something like...
|
|
# P = ParamSpec('P')
|
|
# T = TypeVar('T')
|
|
# C = Callable[P, T]
|
|
# D = C[[int, str], float]
|
|
# ...we need to be careful; `new_args` should end up as
|
|
# `(int, str, float)` rather than `([int, str], float)`.
|
|
new_args.extend(new_arg)
|
|
elif _is_unpacked_typevartuple(old_arg):
|
|
# Consider the following `_GenericAlias`, `B`:
|
|
# class A(Generic[*Ts]): ...
|
|
# B = A[T, *Ts]
|
|
# If we then do:
|
|
# B[float, int, str]
|
|
# The `new_arg` corresponding to `T` will be `float`, and the
|
|
# `new_arg` corresponding to `*Ts` will be `(int, str)`. We
|
|
# should join all these types together in a flat list
|
|
# `(float, int, str)` - so again, we should `extend`.
|
|
new_args.extend(new_arg)
|
|
elif isinstance(old_arg, tuple):
|
|
# Corner case:
|
|
# P = ParamSpec('P')
|
|
# T = TypeVar('T')
|
|
# class Base(Generic[P]): ...
|
|
# Can be substituted like this:
|
|
# X = Base[[int, T]]
|
|
# In this case, `old_arg` will be a tuple:
|
|
new_args.append(
|
|
tuple(self._make_substitution(old_arg, new_arg_by_param)),
|
|
)
|
|
else:
|
|
new_args.append(new_arg)
|
|
return new_args
|
|
|
|
def copy_with(self, args):
|
|
return self.__class__(self.__origin__, args, name=self._name, inst=self._inst)
|
|
|
|
def __repr__(self):
|
|
if self._name:
|
|
name = 'typing.' + self._name
|
|
else:
|
|
name = _type_repr(self.__origin__)
|
|
if self.__args__:
|
|
args = ", ".join([_type_repr(a) for a in self.__args__])
|
|
else:
|
|
# To ensure the repr is eval-able.
|
|
args = "()"
|
|
return f'{name}[{args}]'
|
|
|
|
def __reduce__(self):
|
|
if self._name:
|
|
origin = globals()[self._name]
|
|
else:
|
|
origin = self.__origin__
|
|
args = tuple(self.__args__)
|
|
if len(args) == 1 and not isinstance(args[0], tuple):
|
|
args, = args
|
|
return operator.getitem, (origin, args)
|
|
|
|
def __mro_entries__(self, bases):
|
|
if isinstance(self.__origin__, _SpecialForm):
|
|
raise TypeError(f"Cannot subclass {self!r}")
|
|
|
|
if self._name: # generic version of an ABC or built-in class
|
|
return super().__mro_entries__(bases)
|
|
if self.__origin__ is Generic:
|
|
if Protocol in bases:
|
|
return ()
|
|
i = bases.index(self)
|
|
for b in bases[i+1:]:
|
|
if isinstance(b, _BaseGenericAlias) and b is not self:
|
|
return ()
|
|
return (self.__origin__,)
|
|
|
|
def __iter__(self):
|
|
yield Unpack[self]
|
|
|
|
|
|
# _nparams is the number of accepted parameters, e.g. 0 for Hashable,
|
|
# 1 for List and 2 for Dict. It may be -1 if variable number of
|
|
# parameters are accepted (needs custom __getitem__).
|
|
|
|
class _SpecialGenericAlias(_NotIterable, _BaseGenericAlias, _root=True):
|
|
def __init__(self, origin, nparams, *, inst=True, name=None, defaults=()):
|
|
if name is None:
|
|
name = origin.__name__
|
|
super().__init__(origin, inst=inst, name=name)
|
|
self._nparams = nparams
|
|
self._defaults = defaults
|
|
if origin.__module__ == 'builtins':
|
|
self.__doc__ = f'A generic version of {origin.__qualname__}.'
|
|
else:
|
|
self.__doc__ = f'A generic version of {origin.__module__}.{origin.__qualname__}.'
|
|
|
|
@_tp_cache
|
|
def __getitem__(self, params):
|
|
if not isinstance(params, tuple):
|
|
params = (params,)
|
|
msg = "Parameters to generic types must be types."
|
|
params = tuple(_type_check(p, msg) for p in params)
|
|
if (self._defaults
|
|
and len(params) < self._nparams
|
|
and len(params) + len(self._defaults) >= self._nparams
|
|
):
|
|
params = (*params, *self._defaults[len(params) - self._nparams:])
|
|
actual_len = len(params)
|
|
|
|
if actual_len != self._nparams:
|
|
if self._defaults:
|
|
expected = f"at least {self._nparams - len(self._defaults)}"
|
|
else:
|
|
expected = str(self._nparams)
|
|
if not self._nparams:
|
|
raise TypeError(f"{self} is not a generic class")
|
|
raise TypeError(f"Too {'many' if actual_len > self._nparams else 'few'} arguments for {self};"
|
|
f" actual {actual_len}, expected {expected}")
|
|
return self.copy_with(params)
|
|
|
|
def copy_with(self, params):
|
|
return _GenericAlias(self.__origin__, params,
|
|
name=self._name, inst=self._inst)
|
|
|
|
def __repr__(self):
|
|
return 'typing.' + self._name
|
|
|
|
def __subclasscheck__(self, cls):
|
|
if isinstance(cls, _SpecialGenericAlias):
|
|
return issubclass(cls.__origin__, self.__origin__)
|
|
if not isinstance(cls, _GenericAlias):
|
|
return issubclass(cls, self.__origin__)
|
|
return super().__subclasscheck__(cls)
|
|
|
|
def __reduce__(self):
|
|
return self._name
|
|
|
|
def __or__(self, right):
|
|
return Union[self, right]
|
|
|
|
def __ror__(self, left):
|
|
return Union[left, self]
|
|
|
|
|
|
class _CallableGenericAlias(_NotIterable, _GenericAlias, _root=True):
|
|
def __repr__(self):
|
|
assert self._name == 'Callable'
|
|
args = self.__args__
|
|
if len(args) == 2 and _is_param_expr(args[0]):
|
|
return super().__repr__()
|
|
return (f'typing.Callable'
|
|
f'[[{", ".join([_type_repr(a) for a in args[:-1]])}], '
|
|
f'{_type_repr(args[-1])}]')
|
|
|
|
def __reduce__(self):
|
|
args = self.__args__
|
|
if not (len(args) == 2 and _is_param_expr(args[0])):
|
|
args = list(args[:-1]), args[-1]
|
|
return operator.getitem, (Callable, args)
|
|
|
|
|
|
class _CallableType(_SpecialGenericAlias, _root=True):
|
|
def copy_with(self, params):
|
|
return _CallableGenericAlias(self.__origin__, params,
|
|
name=self._name, inst=self._inst)
|
|
|
|
def __getitem__(self, params):
|
|
if not isinstance(params, tuple) or len(params) != 2:
|
|
raise TypeError("Callable must be used as "
|
|
"Callable[[arg, ...], result].")
|
|
args, result = params
|
|
# This relaxes what args can be on purpose to allow things like
|
|
# PEP 612 ParamSpec. Responsibility for whether a user is using
|
|
# Callable[...] properly is deferred to static type checkers.
|
|
if isinstance(args, list):
|
|
params = (tuple(args), result)
|
|
else:
|
|
params = (args, result)
|
|
return self.__getitem_inner__(params)
|
|
|
|
@_tp_cache
|
|
def __getitem_inner__(self, params):
|
|
args, result = params
|
|
msg = "Callable[args, result]: result must be a type."
|
|
result = _type_check(result, msg)
|
|
if args is Ellipsis:
|
|
return self.copy_with((_TypingEllipsis, result))
|
|
if not isinstance(args, tuple):
|
|
args = (args,)
|
|
args = tuple(_type_convert(arg) for arg in args)
|
|
params = args + (result,)
|
|
return self.copy_with(params)
|
|
|
|
|
|
class _TupleType(_SpecialGenericAlias, _root=True):
|
|
@_tp_cache
|
|
def __getitem__(self, params):
|
|
if not isinstance(params, tuple):
|
|
params = (params,)
|
|
if len(params) >= 2 and params[-1] is ...:
|
|
msg = "Tuple[t, ...]: t must be a type."
|
|
params = tuple(_type_check(p, msg) for p in params[:-1])
|
|
return self.copy_with((*params, _TypingEllipsis))
|
|
msg = "Tuple[t0, t1, ...]: each t must be a type."
|
|
params = tuple(_type_check(p, msg) for p in params)
|
|
return self.copy_with(params)
|
|
|
|
|
|
class _UnionGenericAlias(_NotIterable, _GenericAlias, _root=True):
|
|
def copy_with(self, params):
|
|
return Union[params]
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, (_UnionGenericAlias, types.UnionType)):
|
|
return NotImplemented
|
|
try: # fast path
|
|
return set(self.__args__) == set(other.__args__)
|
|
except TypeError: # not hashable, slow path
|
|
return _compare_args_orderless(self.__args__, other.__args__)
|
|
|
|
def __hash__(self):
|
|
return hash(frozenset(self.__args__))
|
|
|
|
def __repr__(self):
|
|
args = self.__args__
|
|
if len(args) == 2:
|
|
if args[0] is type(None):
|
|
return f'typing.Optional[{_type_repr(args[1])}]'
|
|
elif args[1] is type(None):
|
|
return f'typing.Optional[{_type_repr(args[0])}]'
|
|
return super().__repr__()
|
|
|
|
def __instancecheck__(self, obj):
|
|
return self.__subclasscheck__(type(obj))
|
|
|
|
def __subclasscheck__(self, cls):
|
|
for arg in self.__args__:
|
|
if issubclass(cls, arg):
|
|
return True
|
|
|
|
def __reduce__(self):
|
|
func, (origin, args) = super().__reduce__()
|
|
return func, (Union, args)
|
|
|
|
|
|
def _value_and_type_iter(parameters):
|
|
return ((p, type(p)) for p in parameters)
|
|
|
|
|
|
class _LiteralGenericAlias(_GenericAlias, _root=True):
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _LiteralGenericAlias):
|
|
return NotImplemented
|
|
|
|
return set(_value_and_type_iter(self.__args__)) == set(_value_and_type_iter(other.__args__))
|
|
|
|
def __hash__(self):
|
|
return hash(frozenset(_value_and_type_iter(self.__args__)))
|
|
|
|
|
|
class _ConcatenateGenericAlias(_GenericAlias, _root=True):
|
|
def copy_with(self, params):
|
|
if isinstance(params[-1], (list, tuple)):
|
|
return (*params[:-1], *params[-1])
|
|
if isinstance(params[-1], _ConcatenateGenericAlias):
|
|
params = (*params[:-1], *params[-1].__args__)
|
|
return super().copy_with(params)
|
|
|
|
|
|
@_SpecialForm
|
|
def Unpack(self, parameters):
|
|
"""Type unpack operator.
|
|
|
|
The type unpack operator takes the child types from some container type,
|
|
such as `tuple[int, str]` or a `TypeVarTuple`, and 'pulls them out'.
|
|
|
|
For example::
|
|
|
|
# For some generic class `Foo`:
|
|
Foo[Unpack[tuple[int, str]]] # Equivalent to Foo[int, str]
|
|
|
|
Ts = TypeVarTuple('Ts')
|
|
# Specifies that `Bar` is generic in an arbitrary number of types.
|
|
# (Think of `Ts` as a tuple of an arbitrary number of individual
|
|
# `TypeVar`s, which the `Unpack` is 'pulling out' directly into the
|
|
# `Generic[]`.)
|
|
class Bar(Generic[Unpack[Ts]]): ...
|
|
Bar[int] # Valid
|
|
Bar[int, str] # Also valid
|
|
|
|
From Python 3.11, this can also be done using the `*` operator::
|
|
|
|
Foo[*tuple[int, str]]
|
|
class Bar(Generic[*Ts]): ...
|
|
|
|
And from Python 3.12, it can be done using built-in syntax for generics::
|
|
|
|
Foo[*tuple[int, str]]
|
|
class Bar[*Ts]: ...
|
|
|
|
The operator can also be used along with a `TypedDict` to annotate
|
|
`**kwargs` in a function signature::
|
|
|
|
class Movie(TypedDict):
|
|
name: str
|
|
year: int
|
|
|
|
# This function expects two keyword arguments - *name* of type `str` and
|
|
# *year* of type `int`.
|
|
def foo(**kwargs: Unpack[Movie]): ...
|
|
|
|
Note that there is only some runtime checking of this operator. Not
|
|
everything the runtime allows may be accepted by static type checkers.
|
|
|
|
For more information, see PEPs 646 and 692.
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.')
|
|
return _UnpackGenericAlias(origin=self, args=(item,))
|
|
|
|
|
|
class _UnpackGenericAlias(_GenericAlias, _root=True):
|
|
def __repr__(self):
|
|
# `Unpack` only takes one argument, so __args__ should contain only
|
|
# a single item.
|
|
return f'typing.Unpack[{_type_repr(self.__args__[0])}]'
|
|
|
|
def __getitem__(self, args):
|
|
if self.__typing_is_unpacked_typevartuple__:
|
|
return args
|
|
return super().__getitem__(args)
|
|
|
|
@property
|
|
def __typing_unpacked_tuple_args__(self):
|
|
assert self.__origin__ is Unpack
|
|
assert len(self.__args__) == 1
|
|
arg, = self.__args__
|
|
if isinstance(arg, (_GenericAlias, types.GenericAlias)):
|
|
if arg.__origin__ is not tuple:
|
|
raise TypeError("Unpack[...] must be used with a tuple type")
|
|
return arg.__args__
|
|
return None
|
|
|
|
@property
|
|
def __typing_is_unpacked_typevartuple__(self):
|
|
assert self.__origin__ is Unpack
|
|
assert len(self.__args__) == 1
|
|
return isinstance(self.__args__[0], TypeVarTuple)
|
|
|
|
|
|
class _TypingEllipsis:
|
|
"""Internal placeholder for ... (ellipsis)."""
|
|
|
|
|
|
_TYPING_INTERNALS = frozenset({
|
|
'__parameters__', '__orig_bases__', '__orig_class__',
|
|
'_is_protocol', '_is_runtime_protocol', '__protocol_attrs__',
|
|
'__non_callable_proto_members__', '__type_params__',
|
|
})
|
|
|
|
_SPECIAL_NAMES = frozenset({
|
|
'__abstractmethods__', '__annotations__', '__dict__', '__doc__',
|
|
'__init__', '__module__', '__new__', '__slots__',
|
|
'__subclasshook__', '__weakref__', '__class_getitem__',
|
|
'__match_args__', '__static_attributes__', '__firstlineno__',
|
|
'__annotate__',
|
|
})
|
|
|
|
# These special attributes will be not collected as protocol members.
|
|
EXCLUDED_ATTRIBUTES = _TYPING_INTERNALS | _SPECIAL_NAMES | {'_MutableMapping__marker'}
|
|
|
|
|
|
def _get_protocol_attrs(cls):
|
|
"""Collect protocol members from a protocol class objects.
|
|
|
|
This includes names actually defined in the class dictionary, as well
|
|
as names that appear in annotations. Special names (above) are skipped.
|
|
"""
|
|
attrs = set()
|
|
for base in cls.__mro__[:-1]: # without object
|
|
if base.__name__ in {'Protocol', 'Generic'}:
|
|
continue
|
|
annotations = getattr(base, '__annotations__', {})
|
|
for attr in (*base.__dict__, *annotations):
|
|
if not attr.startswith('_abc_') and attr not in EXCLUDED_ATTRIBUTES:
|
|
attrs.add(attr)
|
|
return attrs
|
|
|
|
|
|
def _no_init_or_replace_init(self, *args, **kwargs):
|
|
cls = type(self)
|
|
|
|
if cls._is_protocol:
|
|
raise TypeError('Protocols cannot be instantiated')
|
|
|
|
# Already using a custom `__init__`. No need to calculate correct
|
|
# `__init__` to call. This can lead to RecursionError. See bpo-45121.
|
|
if cls.__init__ is not _no_init_or_replace_init:
|
|
return
|
|
|
|
# Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`.
|
|
# The first instantiation of the subclass will call `_no_init_or_replace_init` which
|
|
# searches for a proper new `__init__` in the MRO. The new `__init__`
|
|
# replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent
|
|
# instantiation of the protocol subclass will thus use the new
|
|
# `__init__` and no longer call `_no_init_or_replace_init`.
|
|
for base in cls.__mro__:
|
|
init = base.__dict__.get('__init__', _no_init_or_replace_init)
|
|
if init is not _no_init_or_replace_init:
|
|
cls.__init__ = init
|
|
break
|
|
else:
|
|
# should not happen
|
|
cls.__init__ = object.__init__
|
|
|
|
cls.__init__(self, *args, **kwargs)
|
|
|
|
|
|
def _caller(depth=1, default='__main__'):
|
|
try:
|
|
return sys._getframemodulename(depth + 1) or default
|
|
except AttributeError: # For platforms without _getframemodulename()
|
|
pass
|
|
try:
|
|
return sys._getframe(depth + 1).f_globals.get('__name__', default)
|
|
except (AttributeError, ValueError): # For platforms without _getframe()
|
|
pass
|
|
return None
|
|
|
|
def _allow_reckless_class_checks(depth=2):
|
|
"""Allow instance and class checks for special stdlib modules.
|
|
|
|
The abc and functools modules indiscriminately call isinstance() and
|
|
issubclass() on the whole MRO of a user class, which may contain protocols.
|
|
"""
|
|
return _caller(depth) in {'abc', 'functools', None}
|
|
|
|
|
|
_PROTO_ALLOWLIST = {
|
|
'collections.abc': [
|
|
'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable',
|
|
'AsyncIterator', 'Hashable', 'Sized', 'Container', 'Collection',
|
|
'Reversible', 'Buffer',
|
|
],
|
|
'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'],
|
|
'os': ['PathLike'],
|
|
}
|
|
|
|
|
|
@functools.cache
|
|
def _lazy_load_getattr_static():
|
|
# Import getattr_static lazily so as not to slow down the import of typing.py
|
|
# Cache the result so we don't slow down _ProtocolMeta.__instancecheck__ unnecessarily
|
|
from inspect import getattr_static
|
|
return getattr_static
|
|
|
|
|
|
_cleanups.append(_lazy_load_getattr_static.cache_clear)
|
|
|
|
def _pickle_psargs(psargs):
|
|
return ParamSpecArgs, (psargs.__origin__,)
|
|
|
|
copyreg.pickle(ParamSpecArgs, _pickle_psargs)
|
|
|
|
def _pickle_pskwargs(pskwargs):
|
|
return ParamSpecKwargs, (pskwargs.__origin__,)
|
|
|
|
copyreg.pickle(ParamSpecKwargs, _pickle_pskwargs)
|
|
|
|
del _pickle_psargs, _pickle_pskwargs
|
|
|
|
|
|
# Preload these once, as globals, as a micro-optimisation.
|
|
# This makes a significant difference to the time it takes
|
|
# to do `isinstance()`/`issubclass()` checks
|
|
# against runtime-checkable protocols with only one callable member.
|
|
_abc_instancecheck = ABCMeta.__instancecheck__
|
|
_abc_subclasscheck = ABCMeta.__subclasscheck__
|
|
|
|
|
|
def _type_check_issubclass_arg_1(arg):
|
|
"""Raise TypeError if `arg` is not an instance of `type`
|
|
in `issubclass(arg, <protocol>)`.
|
|
|
|
In most cases, this is verified by type.__subclasscheck__.
|
|
Checking it again unnecessarily would slow down issubclass() checks,
|
|
so, we don't perform this check unless we absolutely have to.
|
|
|
|
For various error paths, however,
|
|
we want to ensure that *this* error message is shown to the user
|
|
where relevant, rather than a typing.py-specific error message.
|
|
"""
|
|
if not isinstance(arg, type):
|
|
# Same error message as for issubclass(1, int).
|
|
raise TypeError('issubclass() arg 1 must be a class')
|
|
|
|
|
|
class _ProtocolMeta(ABCMeta):
|
|
# This metaclass is somewhat unfortunate,
|
|
# but is necessary for several reasons...
|
|
def __new__(mcls, name, bases, namespace, /, **kwargs):
|
|
if name == "Protocol" and bases == (Generic,):
|
|
pass
|
|
elif Protocol in bases:
|
|
for base in bases:
|
|
if not (
|
|
base in {object, Generic}
|
|
or base.__name__ in _PROTO_ALLOWLIST.get(base.__module__, [])
|
|
or (
|
|
issubclass(base, Generic)
|
|
and getattr(base, "_is_protocol", False)
|
|
)
|
|
):
|
|
raise TypeError(
|
|
f"Protocols can only inherit from other protocols, "
|
|
f"got {base!r}"
|
|
)
|
|
return super().__new__(mcls, name, bases, namespace, **kwargs)
|
|
|
|
def __init__(cls, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
if getattr(cls, "_is_protocol", False):
|
|
cls.__protocol_attrs__ = _get_protocol_attrs(cls)
|
|
|
|
def __subclasscheck__(cls, other):
|
|
if cls is Protocol:
|
|
return type.__subclasscheck__(cls, other)
|
|
if (
|
|
getattr(cls, '_is_protocol', False)
|
|
and not _allow_reckless_class_checks()
|
|
):
|
|
if not getattr(cls, '_is_runtime_protocol', False):
|
|
_type_check_issubclass_arg_1(other)
|
|
raise TypeError(
|
|
"Instance and class checks can only be used with "
|
|
"@runtime_checkable protocols"
|
|
)
|
|
if (
|
|
# this attribute is set by @runtime_checkable:
|
|
cls.__non_callable_proto_members__
|
|
and cls.__dict__.get("__subclasshook__") is _proto_hook
|
|
):
|
|
_type_check_issubclass_arg_1(other)
|
|
non_method_attrs = sorted(cls.__non_callable_proto_members__)
|
|
raise TypeError(
|
|
"Protocols with non-method members don't support issubclass()."
|
|
f" Non-method members: {str(non_method_attrs)[1:-1]}."
|
|
)
|
|
return _abc_subclasscheck(cls, other)
|
|
|
|
def __instancecheck__(cls, instance):
|
|
# We need this method for situations where attributes are
|
|
# assigned in __init__.
|
|
if cls is Protocol:
|
|
return type.__instancecheck__(cls, instance)
|
|
if not getattr(cls, "_is_protocol", False):
|
|
# i.e., it's a concrete subclass of a protocol
|
|
return _abc_instancecheck(cls, instance)
|
|
|
|
if (
|
|
not getattr(cls, '_is_runtime_protocol', False) and
|
|
not _allow_reckless_class_checks()
|
|
):
|
|
raise TypeError("Instance and class checks can only be used with"
|
|
" @runtime_checkable protocols")
|
|
|
|
if _abc_instancecheck(cls, instance):
|
|
return True
|
|
|
|
getattr_static = _lazy_load_getattr_static()
|
|
for attr in cls.__protocol_attrs__:
|
|
try:
|
|
val = getattr_static(instance, attr)
|
|
except AttributeError:
|
|
break
|
|
# this attribute is set by @runtime_checkable:
|
|
if val is None and attr not in cls.__non_callable_proto_members__:
|
|
break
|
|
else:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
@classmethod
|
|
def _proto_hook(cls, other):
|
|
if not cls.__dict__.get('_is_protocol', False):
|
|
return NotImplemented
|
|
|
|
for attr in cls.__protocol_attrs__:
|
|
for base in other.__mro__:
|
|
# Check if the members appears in the class dictionary...
|
|
if attr in base.__dict__:
|
|
if base.__dict__[attr] is None:
|
|
return NotImplemented
|
|
break
|
|
|
|
# ...or in annotations, if it is a sub-protocol.
|
|
annotations = getattr(base, '__annotations__', {})
|
|
if (isinstance(annotations, collections.abc.Mapping) and
|
|
attr in annotations and
|
|
issubclass(other, Generic) and getattr(other, '_is_protocol', False)):
|
|
break
|
|
else:
|
|
return NotImplemented
|
|
return True
|
|
|
|
|
|
class Protocol(Generic, metaclass=_ProtocolMeta):
|
|
"""Base class for protocol classes.
|
|
|
|
Protocol classes are defined as::
|
|
|
|
class Proto(Protocol):
|
|
def meth(self) -> int:
|
|
...
|
|
|
|
Such classes are primarily used with static type checkers that recognize
|
|
structural subtyping (static duck-typing).
|
|
|
|
For example::
|
|
|
|
class C:
|
|
def meth(self) -> int:
|
|
return 0
|
|
|
|
def func(x: Proto) -> int:
|
|
return x.meth()
|
|
|
|
func(C()) # Passes static type check
|
|
|
|
See PEP 544 for details. Protocol classes decorated with
|
|
@typing.runtime_checkable act as simple-minded runtime protocols that check
|
|
only the presence of given attributes, ignoring their type signatures.
|
|
Protocol classes can be generic, they are defined as::
|
|
|
|
class GenProto[T](Protocol):
|
|
def meth(self) -> T:
|
|
...
|
|
"""
|
|
|
|
__slots__ = ()
|
|
_is_protocol = True
|
|
_is_runtime_protocol = False
|
|
|
|
def __init_subclass__(cls, *args, **kwargs):
|
|
super().__init_subclass__(*args, **kwargs)
|
|
|
|
# Determine if this is a protocol or a concrete subclass.
|
|
if not cls.__dict__.get('_is_protocol', False):
|
|
cls._is_protocol = any(b is Protocol for b in cls.__bases__)
|
|
|
|
# Set (or override) the protocol subclass hook.
|
|
if '__subclasshook__' not in cls.__dict__:
|
|
cls.__subclasshook__ = _proto_hook
|
|
|
|
# Prohibit instantiation for protocol classes
|
|
if cls._is_protocol and cls.__init__ is Protocol.__init__:
|
|
cls.__init__ = _no_init_or_replace_init
|
|
|
|
|
|
class _AnnotatedAlias(_NotIterable, _GenericAlias, _root=True):
|
|
"""Runtime representation of an annotated type.
|
|
|
|
At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'
|
|
with extra metadata. The alias behaves like a normal typing alias.
|
|
Instantiating is the same as instantiating the underlying type; binding
|
|
it to types is also the same.
|
|
|
|
The metadata itself is stored in a '__metadata__' attribute as a tuple.
|
|
"""
|
|
|
|
def __init__(self, origin, metadata):
|
|
if isinstance(origin, _AnnotatedAlias):
|
|
metadata = origin.__metadata__ + metadata
|
|
origin = origin.__origin__
|
|
super().__init__(origin, origin, name='Annotated')
|
|
self.__metadata__ = metadata
|
|
|
|
def copy_with(self, params):
|
|
assert len(params) == 1
|
|
new_type = params[0]
|
|
return _AnnotatedAlias(new_type, self.__metadata__)
|
|
|
|
def __repr__(self):
|
|
return "typing.Annotated[{}, {}]".format(
|
|
_type_repr(self.__origin__),
|
|
", ".join(repr(a) for a in self.__metadata__)
|
|
)
|
|
|
|
def __reduce__(self):
|
|
return operator.getitem, (
|
|
Annotated, (self.__origin__,) + self.__metadata__
|
|
)
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _AnnotatedAlias):
|
|
return NotImplemented
|
|
return (self.__origin__ == other.__origin__
|
|
and self.__metadata__ == other.__metadata__)
|
|
|
|
def __hash__(self):
|
|
return hash((self.__origin__, self.__metadata__))
|
|
|
|
def __getattr__(self, attr):
|
|
if attr in {'__name__', '__qualname__'}:
|
|
return 'Annotated'
|
|
return super().__getattr__(attr)
|
|
|
|
def __mro_entries__(self, bases):
|
|
return (self.__origin__,)
|
|
|
|
|
|
@_TypedCacheSpecialForm
|
|
@_tp_cache(typed=True)
|
|
def Annotated(self, *params):
|
|
"""Add context-specific metadata to a type.
|
|
|
|
Example: Annotated[int, runtime_check.Unsigned] indicates to the
|
|
hypothetical runtime_check module that this type is an unsigned int.
|
|
Every other consumer of this type can ignore this metadata and treat
|
|
this type as int.
|
|
|
|
The first argument to Annotated must be a valid type.
|
|
|
|
Details:
|
|
|
|
- It's an error to call `Annotated` with less than two arguments.
|
|
- Access the metadata via the ``__metadata__`` attribute::
|
|
|
|
assert Annotated[int, '$'].__metadata__ == ('$',)
|
|
|
|
- Nested Annotated types are flattened::
|
|
|
|
assert Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]
|
|
|
|
- Instantiating an annotated type is equivalent to instantiating the
|
|
underlying type::
|
|
|
|
assert Annotated[C, Ann1](5) == C(5)
|
|
|
|
- Annotated can be used as a generic type alias::
|
|
|
|
type Optimized[T] = Annotated[T, runtime.Optimize()]
|
|
# type checker will treat Optimized[int]
|
|
# as equivalent to Annotated[int, runtime.Optimize()]
|
|
|
|
type OptimizedList[T] = Annotated[list[T], runtime.Optimize()]
|
|
# type checker will treat OptimizedList[int]
|
|
# as equivalent to Annotated[list[int], runtime.Optimize()]
|
|
|
|
- Annotated cannot be used with an unpacked TypeVarTuple::
|
|
|
|
type Variadic[*Ts] = Annotated[*Ts, Ann1] # NOT valid
|
|
|
|
This would be equivalent to::
|
|
|
|
Annotated[T1, T2, T3, ..., Ann1]
|
|
|
|
where T1, T2 etc. are TypeVars, which would be invalid, because
|
|
only one type should be passed to Annotated.
|
|
"""
|
|
if len(params) < 2:
|
|
raise TypeError("Annotated[...] should be used "
|
|
"with at least two arguments (a type and an "
|
|
"annotation).")
|
|
if _is_unpacked_typevartuple(params[0]):
|
|
raise TypeError("Annotated[...] should not be used with an "
|
|
"unpacked TypeVarTuple")
|
|
msg = "Annotated[t, ...]: t must be a type."
|
|
origin = _type_check(params[0], msg, allow_special_forms=True)
|
|
metadata = tuple(params[1:])
|
|
return _AnnotatedAlias(origin, metadata)
|
|
|
|
|
|
def runtime_checkable(cls):
|
|
"""Mark a protocol class as a runtime protocol.
|
|
|
|
Such protocol can be used with isinstance() and issubclass().
|
|
Raise TypeError if applied to a non-protocol class.
|
|
This allows a simple-minded structural check very similar to
|
|
one trick ponies in collections.abc such as Iterable.
|
|
|
|
For example::
|
|
|
|
@runtime_checkable
|
|
class Closable(Protocol):
|
|
def close(self): ...
|
|
|
|
assert isinstance(open('/some/file'), Closable)
|
|
|
|
Warning: this will check only the presence of the required methods,
|
|
not their type signatures!
|
|
"""
|
|
if not issubclass(cls, Generic) or not getattr(cls, '_is_protocol', False):
|
|
raise TypeError('@runtime_checkable can be only applied to protocol classes,'
|
|
' got %r' % cls)
|
|
cls._is_runtime_protocol = True
|
|
# PEP 544 prohibits using issubclass()
|
|
# with protocols that have non-method members.
|
|
# See gh-113320 for why we compute this attribute here,
|
|
# rather than in `_ProtocolMeta.__init__`
|
|
cls.__non_callable_proto_members__ = set()
|
|
for attr in cls.__protocol_attrs__:
|
|
try:
|
|
is_callable = callable(getattr(cls, attr, None))
|
|
except Exception as e:
|
|
raise TypeError(
|
|
f"Failed to determine whether protocol member {attr!r} "
|
|
"is a method member"
|
|
) from e
|
|
else:
|
|
if not is_callable:
|
|
cls.__non_callable_proto_members__.add(attr)
|
|
return cls
|
|
|
|
|
|
def cast(typ, val):
|
|
"""Cast a value to a type.
|
|
|
|
This returns the value unchanged. To the type checker this
|
|
signals that the return value has the designated type, but at
|
|
runtime we intentionally don't check anything (we want this
|
|
to be as fast as possible).
|
|
"""
|
|
return val
|
|
|
|
|
|
def assert_type(val, typ, /):
|
|
"""Ask a static type checker to confirm that the value is of the given type.
|
|
|
|
At runtime this does nothing: it returns the first argument unchanged with no
|
|
checks or side effects, no matter the actual type of the argument.
|
|
|
|
When a static type checker encounters a call to assert_type(), it
|
|
emits an error if the value is not of the specified type::
|
|
|
|
def greet(name: str) -> None:
|
|
assert_type(name, str) # OK
|
|
assert_type(name, int) # type checker error
|
|
"""
|
|
return val
|
|
|
|
|
|
def get_type_hints(obj, globalns=None, localns=None, include_extras=False,
|
|
*, format=annotationlib.Format.VALUE):
|
|
"""Return type hints for an object.
|
|
|
|
This is often the same as obj.__annotations__, but it handles
|
|
forward references encoded as string literals and recursively replaces all
|
|
'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
|
|
|
|
The argument may be a module, class, method, or function. The annotations
|
|
are returned as a dictionary. For classes, annotations include also
|
|
inherited members.
|
|
|
|
TypeError is raised if the argument is not of a type that can contain
|
|
annotations, and an empty dictionary is returned if no annotations are
|
|
present.
|
|
|
|
BEWARE -- the behavior of globalns and localns is counterintuitive
|
|
(unless you are familiar with how eval() and exec() work). The
|
|
search order is locals first, then globals.
|
|
|
|
- If no dict arguments are passed, an attempt is made to use the
|
|
globals from obj (or the respective module's globals for classes),
|
|
and these are also used as the locals. If the object does not appear
|
|
to have globals, an empty dictionary is used. For classes, the search
|
|
order is globals first then locals.
|
|
|
|
- If one dict argument is passed, it is used for both globals and
|
|
locals.
|
|
|
|
- If two dict arguments are passed, they specify globals and
|
|
locals, respectively.
|
|
"""
|
|
if getattr(obj, '__no_type_check__', None):
|
|
return {}
|
|
# Classes require a special treatment.
|
|
if isinstance(obj, type):
|
|
hints = {}
|
|
for base in reversed(obj.__mro__):
|
|
ann = annotationlib.get_annotations(base, format=format)
|
|
if format is annotationlib.Format.STRING:
|
|
hints.update(ann)
|
|
continue
|
|
if globalns is None:
|
|
base_globals = getattr(sys.modules.get(base.__module__, None), '__dict__', {})
|
|
else:
|
|
base_globals = globalns
|
|
base_locals = dict(vars(base)) if localns is None else localns
|
|
if localns is None and globalns is None:
|
|
# This is surprising, but required. Before Python 3.10,
|
|
# get_type_hints only evaluated the globalns of
|
|
# a class. To maintain backwards compatibility, we reverse
|
|
# the globalns and localns order so that eval() looks into
|
|
# *base_globals* first rather than *base_locals*.
|
|
# This only affects ForwardRefs.
|
|
base_globals, base_locals = base_locals, base_globals
|
|
for name, value in ann.items():
|
|
if value is None:
|
|
value = type(None)
|
|
if isinstance(value, str):
|
|
value = _make_forward_ref(value, is_argument=False, is_class=True)
|
|
value = _eval_type(value, base_globals, base_locals, base.__type_params__,
|
|
format=format, owner=obj)
|
|
hints[name] = value
|
|
if include_extras or format is annotationlib.Format.STRING:
|
|
return hints
|
|
else:
|
|
return {k: _strip_annotations(t) for k, t in hints.items()}
|
|
|
|
hints = annotationlib.get_annotations(obj, format=format)
|
|
if (
|
|
not hints
|
|
and not isinstance(obj, types.ModuleType)
|
|
and not callable(obj)
|
|
and not hasattr(obj, '__annotations__')
|
|
and not hasattr(obj, '__annotate__')
|
|
):
|
|
raise TypeError(f"{obj!r} is not a module, class, or callable.")
|
|
if format is annotationlib.Format.STRING:
|
|
return hints
|
|
|
|
if globalns is None:
|
|
if isinstance(obj, types.ModuleType):
|
|
globalns = obj.__dict__
|
|
else:
|
|
nsobj = obj
|
|
# Find globalns for the unwrapped object.
|
|
while hasattr(nsobj, '__wrapped__'):
|
|
nsobj = nsobj.__wrapped__
|
|
globalns = getattr(nsobj, '__globals__', {})
|
|
if localns is None:
|
|
localns = globalns
|
|
elif localns is None:
|
|
localns = globalns
|
|
type_params = getattr(obj, "__type_params__", ())
|
|
for name, value in hints.items():
|
|
if value is None:
|
|
value = type(None)
|
|
if isinstance(value, str):
|
|
# class-level forward refs were handled above, this must be either
|
|
# a module-level annotation or a function argument annotation
|
|
value = _make_forward_ref(
|
|
value,
|
|
is_argument=not isinstance(obj, types.ModuleType),
|
|
is_class=False,
|
|
)
|
|
hints[name] = _eval_type(value, globalns, localns, type_params, format=format, owner=obj)
|
|
return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
|
|
|
|
|
|
def _strip_annotations(t):
|
|
"""Strip the annotations from a given type."""
|
|
if isinstance(t, _AnnotatedAlias):
|
|
return _strip_annotations(t.__origin__)
|
|
if hasattr(t, "__origin__") and t.__origin__ in (Required, NotRequired, ReadOnly):
|
|
return _strip_annotations(t.__args__[0])
|
|
if isinstance(t, _GenericAlias):
|
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
|
|
if stripped_args == t.__args__:
|
|
return t
|
|
return t.copy_with(stripped_args)
|
|
if isinstance(t, GenericAlias):
|
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
|
|
if stripped_args == t.__args__:
|
|
return t
|
|
return GenericAlias(t.__origin__, stripped_args)
|
|
if isinstance(t, types.UnionType):
|
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
|
|
if stripped_args == t.__args__:
|
|
return t
|
|
return functools.reduce(operator.or_, stripped_args)
|
|
|
|
return t
|
|
|
|
|
|
def get_origin(tp):
|
|
"""Get the unsubscripted version of a type.
|
|
|
|
This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar,
|
|
Annotated, and others. Return None for unsupported types.
|
|
|
|
Examples::
|
|
|
|
>>> P = ParamSpec('P')
|
|
>>> assert get_origin(Literal[42]) is Literal
|
|
>>> assert get_origin(int) is None
|
|
>>> assert get_origin(ClassVar[int]) is ClassVar
|
|
>>> assert get_origin(Generic) is Generic
|
|
>>> assert get_origin(Generic[T]) is Generic
|
|
>>> assert get_origin(Union[T, int]) is Union
|
|
>>> assert get_origin(List[Tuple[T, T]][int]) is list
|
|
>>> assert get_origin(P.args) is P
|
|
"""
|
|
if isinstance(tp, _AnnotatedAlias):
|
|
return Annotated
|
|
if isinstance(tp, (_BaseGenericAlias, GenericAlias,
|
|
ParamSpecArgs, ParamSpecKwargs)):
|
|
return tp.__origin__
|
|
if tp is Generic:
|
|
return Generic
|
|
if isinstance(tp, types.UnionType):
|
|
return types.UnionType
|
|
return None
|
|
|
|
|
|
def get_args(tp):
|
|
"""Get type arguments with all substitutions performed.
|
|
|
|
For unions, basic simplifications used by Union constructor are performed.
|
|
|
|
Examples::
|
|
|
|
>>> T = TypeVar('T')
|
|
>>> assert get_args(Dict[str, int]) == (str, int)
|
|
>>> assert get_args(int) == ()
|
|
>>> assert get_args(Union[int, Union[T, int], str][int]) == (int, str)
|
|
>>> assert get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
|
|
>>> assert get_args(Callable[[], T][int]) == ([], int)
|
|
"""
|
|
if isinstance(tp, _AnnotatedAlias):
|
|
return (tp.__origin__,) + tp.__metadata__
|
|
if isinstance(tp, (_GenericAlias, GenericAlias)):
|
|
res = tp.__args__
|
|
if _should_unflatten_callable_args(tp, res):
|
|
res = (list(res[:-1]), res[-1])
|
|
return res
|
|
if isinstance(tp, types.UnionType):
|
|
return tp.__args__
|
|
return ()
|
|
|
|
|
|
def is_typeddict(tp):
|
|
"""Check if an annotation is a TypedDict class.
|
|
|
|
For example::
|
|
|
|
>>> from typing import TypedDict
|
|
>>> class Film(TypedDict):
|
|
... title: str
|
|
... year: int
|
|
...
|
|
>>> is_typeddict(Film)
|
|
True
|
|
>>> is_typeddict(dict)
|
|
False
|
|
"""
|
|
return isinstance(tp, _TypedDictMeta)
|
|
|
|
|
|
_ASSERT_NEVER_REPR_MAX_LENGTH = 100
|
|
|
|
|
|
def assert_never(arg: Never, /) -> Never:
|
|
"""Statically assert that a line of code is unreachable.
|
|
|
|
Example::
|
|
|
|
def int_or_str(arg: int | str) -> None:
|
|
match arg:
|
|
case int():
|
|
print("It's an int")
|
|
case str():
|
|
print("It's a str")
|
|
case _:
|
|
assert_never(arg)
|
|
|
|
If a type checker finds that a call to assert_never() is
|
|
reachable, it will emit an error.
|
|
|
|
At runtime, this throws an exception when called.
|
|
"""
|
|
value = repr(arg)
|
|
if len(value) > _ASSERT_NEVER_REPR_MAX_LENGTH:
|
|
value = value[:_ASSERT_NEVER_REPR_MAX_LENGTH] + '...'
|
|
raise AssertionError(f"Expected code to be unreachable, but got: {value}")
|
|
|
|
|
|
def no_type_check(arg):
|
|
"""Decorator to indicate that annotations are not type hints.
|
|
|
|
The argument must be a class or function; if it is a class, it
|
|
applies recursively to all methods and classes defined in that class
|
|
(but not to methods defined in its superclasses or subclasses).
|
|
|
|
This mutates the function(s) or class(es) in place.
|
|
"""
|
|
if isinstance(arg, type):
|
|
for key in dir(arg):
|
|
obj = getattr(arg, key)
|
|
if (
|
|
not hasattr(obj, '__qualname__')
|
|
or obj.__qualname__ != f'{arg.__qualname__}.{obj.__name__}'
|
|
or getattr(obj, '__module__', None) != arg.__module__
|
|
):
|
|
# We only modify objects that are defined in this type directly.
|
|
# If classes / methods are nested in multiple layers,
|
|
# we will modify them when processing their direct holders.
|
|
continue
|
|
# Instance, class, and static methods:
|
|
if isinstance(obj, types.FunctionType):
|
|
obj.__no_type_check__ = True
|
|
if isinstance(obj, types.MethodType):
|
|
obj.__func__.__no_type_check__ = True
|
|
# Nested types:
|
|
if isinstance(obj, type):
|
|
no_type_check(obj)
|
|
try:
|
|
arg.__no_type_check__ = True
|
|
except TypeError: # built-in classes
|
|
pass
|
|
return arg
|
|
|
|
|
|
def no_type_check_decorator(decorator):
|
|
"""Decorator to give another decorator the @no_type_check effect.
|
|
|
|
This wraps the decorator with something that wraps the decorated
|
|
function in @no_type_check.
|
|
"""
|
|
import warnings
|
|
warnings._deprecated("typing.no_type_check_decorator", remove=(3, 15))
|
|
@functools.wraps(decorator)
|
|
def wrapped_decorator(*args, **kwds):
|
|
func = decorator(*args, **kwds)
|
|
func = no_type_check(func)
|
|
return func
|
|
|
|
return wrapped_decorator
|
|
|
|
|
|
def _overload_dummy(*args, **kwds):
|
|
"""Helper for @overload to raise when called."""
|
|
raise NotImplementedError(
|
|
"You should not call an overloaded function. "
|
|
"A series of @overload-decorated functions "
|
|
"outside a stub module should always be followed "
|
|
"by an implementation that is not @overload-ed.")
|
|
|
|
|
|
# {module: {qualname: {firstlineno: func}}}
|
|
_overload_registry = defaultdict(functools.partial(defaultdict, dict))
|
|
|
|
|
|
def overload(func):
|
|
"""Decorator for overloaded functions/methods.
|
|
|
|
In a stub file, place two or more stub definitions for the same
|
|
function in a row, each decorated with @overload.
|
|
|
|
For example::
|
|
|
|
@overload
|
|
def utf8(value: None) -> None: ...
|
|
@overload
|
|
def utf8(value: bytes) -> bytes: ...
|
|
@overload
|
|
def utf8(value: str) -> bytes: ...
|
|
|
|
In a non-stub file (i.e. a regular .py file), do the same but
|
|
follow it with an implementation. The implementation should *not*
|
|
be decorated with @overload::
|
|
|
|
@overload
|
|
def utf8(value: None) -> None: ...
|
|
@overload
|
|
def utf8(value: bytes) -> bytes: ...
|
|
@overload
|
|
def utf8(value: str) -> bytes: ...
|
|
def utf8(value):
|
|
... # implementation goes here
|
|
|
|
The overloads for a function can be retrieved at runtime using the
|
|
get_overloads() function.
|
|
"""
|
|
# classmethod and staticmethod
|
|
f = getattr(func, "__func__", func)
|
|
try:
|
|
_overload_registry[f.__module__][f.__qualname__][f.__code__.co_firstlineno] = func
|
|
except AttributeError:
|
|
# Not a normal function; ignore.
|
|
pass
|
|
return _overload_dummy
|
|
|
|
|
|
def get_overloads(func):
|
|
"""Return all defined overloads for *func* as a sequence."""
|
|
# classmethod and staticmethod
|
|
f = getattr(func, "__func__", func)
|
|
if f.__module__ not in _overload_registry:
|
|
return []
|
|
mod_dict = _overload_registry[f.__module__]
|
|
if f.__qualname__ not in mod_dict:
|
|
return []
|
|
return list(mod_dict[f.__qualname__].values())
|
|
|
|
|
|
def clear_overloads():
|
|
"""Clear all overloads in the registry."""
|
|
_overload_registry.clear()
|
|
|
|
|
|
def final(f):
|
|
"""Decorator to indicate final methods and final classes.
|
|
|
|
Use this decorator to indicate to type checkers that the decorated
|
|
method cannot be overridden, and decorated class cannot be subclassed.
|
|
|
|
For example::
|
|
|
|
class Base:
|
|
@final
|
|
def done(self) -> None:
|
|
...
|
|
class Sub(Base):
|
|
def done(self) -> None: # Error reported by type checker
|
|
...
|
|
|
|
@final
|
|
class Leaf:
|
|
...
|
|
class Other(Leaf): # Error reported by type checker
|
|
...
|
|
|
|
There is no runtime checking of these properties. The decorator
|
|
attempts to set the ``__final__`` attribute to ``True`` on the decorated
|
|
object to allow runtime introspection.
|
|
"""
|
|
try:
|
|
f.__final__ = True
|
|
except (AttributeError, TypeError):
|
|
# Skip the attribute silently if it is not writable.
|
|
# AttributeError happens if the object has __slots__ or a
|
|
# read-only property, TypeError if it's a builtin class.
|
|
pass
|
|
return f
|
|
|
|
|
|
# Some unconstrained type variables. These were initially used by the container types.
|
|
# They were never meant for export and are now unused, but we keep them around to
|
|
# avoid breaking compatibility with users who import them.
|
|
T = TypeVar('T') # Any type.
|
|
KT = TypeVar('KT') # Key type.
|
|
VT = TypeVar('VT') # Value type.
|
|
T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
|
|
V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
|
|
VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
|
|
T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
|
|
# Internal type variable used for Type[].
|
|
CT_co = TypeVar('CT_co', covariant=True, bound=type)
|
|
|
|
|
|
# A useful type variable with constraints. This represents string types.
|
|
# (This one *is* for export!)
|
|
AnyStr = TypeVar('AnyStr', bytes, str)
|
|
|
|
|
|
# Various ABCs mimicking those in collections.abc.
|
|
_alias = _SpecialGenericAlias
|
|
|
|
Hashable = _alias(collections.abc.Hashable, 0) # Not generic.
|
|
Awaitable = _alias(collections.abc.Awaitable, 1)
|
|
Coroutine = _alias(collections.abc.Coroutine, 3)
|
|
AsyncIterable = _alias(collections.abc.AsyncIterable, 1)
|
|
AsyncIterator = _alias(collections.abc.AsyncIterator, 1)
|
|
Iterable = _alias(collections.abc.Iterable, 1)
|
|
Iterator = _alias(collections.abc.Iterator, 1)
|
|
Reversible = _alias(collections.abc.Reversible, 1)
|
|
Sized = _alias(collections.abc.Sized, 0) # Not generic.
|
|
Container = _alias(collections.abc.Container, 1)
|
|
Collection = _alias(collections.abc.Collection, 1)
|
|
Callable = _CallableType(collections.abc.Callable, 2)
|
|
Callable.__doc__ = \
|
|
"""Deprecated alias to collections.abc.Callable.
|
|
|
|
Callable[[int], str] signifies a function that takes a single
|
|
parameter of type int and returns a str.
|
|
|
|
The subscription syntax must always be used with exactly two
|
|
values: the argument list and the return type.
|
|
The argument list must be a list of types, a ParamSpec,
|
|
Concatenate or ellipsis. The return type must be a single type.
|
|
|
|
There is no syntax to indicate optional or keyword arguments;
|
|
such function types are rarely used as callback types.
|
|
"""
|
|
AbstractSet = _alias(collections.abc.Set, 1, name='AbstractSet')
|
|
MutableSet = _alias(collections.abc.MutableSet, 1)
|
|
# NOTE: Mapping is only covariant in the value type.
|
|
Mapping = _alias(collections.abc.Mapping, 2)
|
|
MutableMapping = _alias(collections.abc.MutableMapping, 2)
|
|
Sequence = _alias(collections.abc.Sequence, 1)
|
|
MutableSequence = _alias(collections.abc.MutableSequence, 1)
|
|
# Tuple accepts variable number of parameters.
|
|
Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
|
|
Tuple.__doc__ = \
|
|
"""Deprecated alias to builtins.tuple.
|
|
|
|
Tuple[X, Y] is the cross-product type of X and Y.
|
|
|
|
Example: Tuple[T1, T2] is a tuple of two elements corresponding
|
|
to type variables T1 and T2. Tuple[int, float, str] is a tuple
|
|
of an int, a float and a string.
|
|
|
|
To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
|
|
"""
|
|
List = _alias(list, 1, inst=False, name='List')
|
|
Deque = _alias(collections.deque, 1, name='Deque')
|
|
Set = _alias(set, 1, inst=False, name='Set')
|
|
FrozenSet = _alias(frozenset, 1, inst=False, name='FrozenSet')
|
|
MappingView = _alias(collections.abc.MappingView, 1)
|
|
KeysView = _alias(collections.abc.KeysView, 1)
|
|
ItemsView = _alias(collections.abc.ItemsView, 2)
|
|
ValuesView = _alias(collections.abc.ValuesView, 1)
|
|
Dict = _alias(dict, 2, inst=False, name='Dict')
|
|
DefaultDict = _alias(collections.defaultdict, 2, name='DefaultDict')
|
|
OrderedDict = _alias(collections.OrderedDict, 2)
|
|
Counter = _alias(collections.Counter, 1)
|
|
ChainMap = _alias(collections.ChainMap, 2)
|
|
Generator = _alias(collections.abc.Generator, 3, defaults=(types.NoneType, types.NoneType))
|
|
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2, defaults=(types.NoneType,))
|
|
Type = _alias(type, 1, inst=False, name='Type')
|
|
Type.__doc__ = \
|
|
"""Deprecated alias to builtins.type.
|
|
|
|
builtins.type or typing.Type can be used to annotate class objects.
|
|
For example, suppose we have the following classes::
|
|
|
|
class User: ... # Abstract base for User classes
|
|
class BasicUser(User): ...
|
|
class ProUser(User): ...
|
|
class TeamUser(User): ...
|
|
|
|
And a function that takes a class argument that's a subclass of
|
|
User and returns an instance of the corresponding class::
|
|
|
|
def new_user[U](user_class: Type[U]) -> U:
|
|
user = user_class()
|
|
# (Here we could write the user object to a database)
|
|
return user
|
|
|
|
joe = new_user(BasicUser)
|
|
|
|
At this point the type checker knows that joe has type BasicUser.
|
|
"""
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsInt(Protocol):
|
|
"""An ABC with one abstract method __int__."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __int__(self) -> int:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsFloat(Protocol):
|
|
"""An ABC with one abstract method __float__."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __float__(self) -> float:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsComplex(Protocol):
|
|
"""An ABC with one abstract method __complex__."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __complex__(self) -> complex:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsBytes(Protocol):
|
|
"""An ABC with one abstract method __bytes__."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __bytes__(self) -> bytes:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsIndex(Protocol):
|
|
"""An ABC with one abstract method __index__."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __index__(self) -> int:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsAbs[T](Protocol):
|
|
"""An ABC with one abstract method __abs__ that is covariant in its return type."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __abs__(self) -> T:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsRound[T](Protocol):
|
|
"""An ABC with one abstract method __round__ that is covariant in its return type."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __round__(self, ndigits: int = 0) -> T:
|
|
pass
|
|
|
|
|
|
def _make_nmtuple(name, fields, annotate_func, module, defaults = ()):
|
|
nm_tpl = collections.namedtuple(name, fields,
|
|
defaults=defaults, module=module)
|
|
nm_tpl.__annotate__ = nm_tpl.__new__.__annotate__ = annotate_func
|
|
return nm_tpl
|
|
|
|
|
|
def _make_eager_annotate(types):
|
|
checked_types = {key: _type_check(val, f"field {key} annotation must be a type")
|
|
for key, val in types.items()}
|
|
def annotate(format):
|
|
match format:
|
|
case annotationlib.Format.VALUE | annotationlib.Format.FORWARDREF:
|
|
return checked_types
|
|
case annotationlib.Format.STRING:
|
|
return annotationlib.annotations_to_string(types)
|
|
case _:
|
|
raise NotImplementedError(format)
|
|
return annotate
|
|
|
|
|
|
# attributes prohibited to set in NamedTuple class syntax
|
|
_prohibited = frozenset({'__new__', '__init__', '__slots__', '__getnewargs__',
|
|
'_fields', '_field_defaults',
|
|
'_make', '_replace', '_asdict', '_source'})
|
|
|
|
_special = frozenset({'__module__', '__name__', '__annotations__', '__annotate__'})
|
|
|
|
|
|
class NamedTupleMeta(type):
|
|
def __new__(cls, typename, bases, ns):
|
|
assert _NamedTuple in bases
|
|
for base in bases:
|
|
if base is not _NamedTuple and base is not Generic:
|
|
raise TypeError(
|
|
'can only inherit from a NamedTuple type and Generic')
|
|
bases = tuple(tuple if base is _NamedTuple else base for base in bases)
|
|
if "__annotations__" in ns:
|
|
types = ns["__annotations__"]
|
|
field_names = list(types)
|
|
annotate = _make_eager_annotate(types)
|
|
elif "__annotate__" in ns:
|
|
original_annotate = ns["__annotate__"]
|
|
types = annotationlib.call_annotate_function(original_annotate, annotationlib.Format.FORWARDREF)
|
|
field_names = list(types)
|
|
|
|
# For backward compatibility, type-check all the types at creation time
|
|
for typ in types.values():
|
|
_type_check(typ, "field annotation must be a type")
|
|
|
|
def annotate(format):
|
|
annos = annotationlib.call_annotate_function(original_annotate, format)
|
|
if format != annotationlib.Format.STRING:
|
|
return {key: _type_check(val, f"field {key} annotation must be a type")
|
|
for key, val in annos.items()}
|
|
return annos
|
|
else:
|
|
# Empty NamedTuple
|
|
field_names = []
|
|
annotate = lambda format: {}
|
|
default_names = []
|
|
for field_name in field_names:
|
|
if field_name in ns:
|
|
default_names.append(field_name)
|
|
elif default_names:
|
|
raise TypeError(f"Non-default namedtuple field {field_name} "
|
|
f"cannot follow default field"
|
|
f"{'s' if len(default_names) > 1 else ''} "
|
|
f"{', '.join(default_names)}")
|
|
nm_tpl = _make_nmtuple(typename, field_names, annotate,
|
|
defaults=[ns[n] for n in default_names],
|
|
module=ns['__module__'])
|
|
nm_tpl.__bases__ = bases
|
|
if Generic in bases:
|
|
class_getitem = _generic_class_getitem
|
|
nm_tpl.__class_getitem__ = classmethod(class_getitem)
|
|
# update from user namespace without overriding special namedtuple attributes
|
|
for key, val in ns.items():
|
|
if key in _prohibited:
|
|
raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
|
|
elif key not in _special:
|
|
if key not in nm_tpl._fields:
|
|
setattr(nm_tpl, key, val)
|
|
try:
|
|
set_name = type(val).__set_name__
|
|
except AttributeError:
|
|
pass
|
|
else:
|
|
try:
|
|
set_name(val, nm_tpl, key)
|
|
except BaseException as e:
|
|
e.add_note(
|
|
f"Error calling __set_name__ on {type(val).__name__!r} "
|
|
f"instance {key!r} in {typename!r}"
|
|
)
|
|
raise
|
|
|
|
if Generic in bases:
|
|
nm_tpl.__init_subclass__()
|
|
return nm_tpl
|
|
|
|
|
|
def NamedTuple(typename, fields=_sentinel, /, **kwargs):
|
|
"""Typed version of namedtuple.
|
|
|
|
Usage::
|
|
|
|
class Employee(NamedTuple):
|
|
name: str
|
|
id: int
|
|
|
|
This is equivalent to::
|
|
|
|
Employee = collections.namedtuple('Employee', ['name', 'id'])
|
|
|
|
The resulting class has an extra __annotations__ attribute, giving a
|
|
dict that maps field names to types. (The field names are also in
|
|
the _fields attribute, which is part of the namedtuple API.)
|
|
An alternative equivalent functional syntax is also accepted::
|
|
|
|
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
|
|
"""
|
|
if fields is _sentinel:
|
|
if kwargs:
|
|
deprecated_thing = "Creating NamedTuple classes using keyword arguments"
|
|
deprecation_msg = (
|
|
"{name} is deprecated and will be disallowed in Python {remove}. "
|
|
"Use the class-based or functional syntax instead."
|
|
)
|
|
else:
|
|
deprecated_thing = "Failing to pass a value for the 'fields' parameter"
|
|
example = f"`{typename} = NamedTuple({typename!r}, [])`"
|
|
deprecation_msg = (
|
|
"{name} is deprecated and will be disallowed in Python {remove}. "
|
|
"To create a NamedTuple class with 0 fields "
|
|
"using the functional syntax, "
|
|
"pass an empty list, e.g. "
|
|
) + example + "."
|
|
elif fields is None:
|
|
if kwargs:
|
|
raise TypeError(
|
|
"Cannot pass `None` as the 'fields' parameter "
|
|
"and also specify fields using keyword arguments"
|
|
)
|
|
else:
|
|
deprecated_thing = "Passing `None` as the 'fields' parameter"
|
|
example = f"`{typename} = NamedTuple({typename!r}, [])`"
|
|
deprecation_msg = (
|
|
"{name} is deprecated and will be disallowed in Python {remove}. "
|
|
"To create a NamedTuple class with 0 fields "
|
|
"using the functional syntax, "
|
|
"pass an empty list, e.g. "
|
|
) + example + "."
|
|
elif kwargs:
|
|
raise TypeError("Either list of fields or keywords"
|
|
" can be provided to NamedTuple, not both")
|
|
if fields is _sentinel or fields is None:
|
|
import warnings
|
|
warnings._deprecated(deprecated_thing, message=deprecation_msg, remove=(3, 15))
|
|
fields = kwargs.items()
|
|
types = {n: _type_check(t, f"field {n} annotation must be a type")
|
|
for n, t in fields}
|
|
field_names = [n for n, _ in fields]
|
|
|
|
nt = _make_nmtuple(typename, field_names, _make_eager_annotate(types), module=_caller())
|
|
nt.__orig_bases__ = (NamedTuple,)
|
|
return nt
|
|
|
|
_NamedTuple = type.__new__(NamedTupleMeta, 'NamedTuple', (), {})
|
|
|
|
def _namedtuple_mro_entries(bases):
|
|
assert NamedTuple in bases
|
|
return (_NamedTuple,)
|
|
|
|
NamedTuple.__mro_entries__ = _namedtuple_mro_entries
|
|
|
|
|
|
def _get_typeddict_qualifiers(annotation_type):
|
|
while True:
|
|
annotation_origin = get_origin(annotation_type)
|
|
if annotation_origin is Annotated:
|
|
annotation_args = get_args(annotation_type)
|
|
if annotation_args:
|
|
annotation_type = annotation_args[0]
|
|
else:
|
|
break
|
|
elif annotation_origin is Required:
|
|
yield Required
|
|
(annotation_type,) = get_args(annotation_type)
|
|
elif annotation_origin is NotRequired:
|
|
yield NotRequired
|
|
(annotation_type,) = get_args(annotation_type)
|
|
elif annotation_origin is ReadOnly:
|
|
yield ReadOnly
|
|
(annotation_type,) = get_args(annotation_type)
|
|
else:
|
|
break
|
|
|
|
|
|
class _TypedDictMeta(type):
|
|
def __new__(cls, name, bases, ns, total=True):
|
|
"""Create a new typed dict class object.
|
|
|
|
This method is called when TypedDict is subclassed,
|
|
or when TypedDict is instantiated. This way
|
|
TypedDict supports all three syntax forms described in its docstring.
|
|
Subclasses and instances of TypedDict return actual dictionaries.
|
|
"""
|
|
for base in bases:
|
|
if type(base) is not _TypedDictMeta and base is not Generic:
|
|
raise TypeError('cannot inherit from both a TypedDict type '
|
|
'and a non-TypedDict base class')
|
|
|
|
if any(issubclass(b, Generic) for b in bases):
|
|
generic_base = (Generic,)
|
|
else:
|
|
generic_base = ()
|
|
|
|
tp_dict = type.__new__(_TypedDictMeta, name, (*generic_base, dict), ns)
|
|
|
|
if not hasattr(tp_dict, '__orig_bases__'):
|
|
tp_dict.__orig_bases__ = bases
|
|
|
|
if "__annotations__" in ns:
|
|
own_annotate = None
|
|
own_annotations = ns["__annotations__"]
|
|
elif "__annotate__" in ns:
|
|
own_annotate = ns["__annotate__"]
|
|
own_annotations = annotationlib.call_annotate_function(
|
|
own_annotate, annotationlib.Format.FORWARDREF, owner=tp_dict
|
|
)
|
|
else:
|
|
own_annotate = None
|
|
own_annotations = {}
|
|
msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
|
|
own_checked_annotations = {
|
|
n: _type_check(tp, msg, module=tp_dict.__module__)
|
|
for n, tp in own_annotations.items()
|
|
}
|
|
required_keys = set()
|
|
optional_keys = set()
|
|
readonly_keys = set()
|
|
mutable_keys = set()
|
|
|
|
for base in bases:
|
|
base_required = base.__dict__.get('__required_keys__', set())
|
|
required_keys |= base_required
|
|
optional_keys -= base_required
|
|
|
|
base_optional = base.__dict__.get('__optional_keys__', set())
|
|
required_keys -= base_optional
|
|
optional_keys |= base_optional
|
|
|
|
readonly_keys.update(base.__dict__.get('__readonly_keys__', ()))
|
|
mutable_keys.update(base.__dict__.get('__mutable_keys__', ()))
|
|
|
|
for annotation_key, annotation_type in own_checked_annotations.items():
|
|
qualifiers = set(_get_typeddict_qualifiers(annotation_type))
|
|
if Required in qualifiers:
|
|
is_required = True
|
|
elif NotRequired in qualifiers:
|
|
is_required = False
|
|
else:
|
|
is_required = total
|
|
|
|
if is_required:
|
|
required_keys.add(annotation_key)
|
|
optional_keys.discard(annotation_key)
|
|
else:
|
|
optional_keys.add(annotation_key)
|
|
required_keys.discard(annotation_key)
|
|
|
|
if ReadOnly in qualifiers:
|
|
if annotation_key in mutable_keys:
|
|
raise TypeError(
|
|
f"Cannot override mutable key {annotation_key!r}"
|
|
" with read-only key"
|
|
)
|
|
readonly_keys.add(annotation_key)
|
|
else:
|
|
mutable_keys.add(annotation_key)
|
|
readonly_keys.discard(annotation_key)
|
|
|
|
assert required_keys.isdisjoint(optional_keys), (
|
|
f"Required keys overlap with optional keys in {name}:"
|
|
f" {required_keys=}, {optional_keys=}"
|
|
)
|
|
|
|
def __annotate__(format):
|
|
annos = {}
|
|
for base in bases:
|
|
if base is Generic:
|
|
continue
|
|
base_annotate = base.__annotate__
|
|
if base_annotate is None:
|
|
continue
|
|
base_annos = annotationlib.call_annotate_function(base.__annotate__, format, owner=base)
|
|
annos.update(base_annos)
|
|
if own_annotate is not None:
|
|
own = annotationlib.call_annotate_function(own_annotate, format, owner=tp_dict)
|
|
if format != annotationlib.Format.STRING:
|
|
own = {
|
|
n: _type_check(tp, msg, module=tp_dict.__module__)
|
|
for n, tp in own.items()
|
|
}
|
|
elif format == annotationlib.Format.STRING:
|
|
own = annotationlib.annotations_to_string(own_annotations)
|
|
elif format in (annotationlib.Format.FORWARDREF, annotationlib.Format.VALUE):
|
|
own = own_checked_annotations
|
|
else:
|
|
raise NotImplementedError(format)
|
|
annos.update(own)
|
|
return annos
|
|
|
|
tp_dict.__annotate__ = __annotate__
|
|
tp_dict.__required_keys__ = frozenset(required_keys)
|
|
tp_dict.__optional_keys__ = frozenset(optional_keys)
|
|
tp_dict.__readonly_keys__ = frozenset(readonly_keys)
|
|
tp_dict.__mutable_keys__ = frozenset(mutable_keys)
|
|
tp_dict.__total__ = total
|
|
return tp_dict
|
|
|
|
__call__ = dict # static method
|
|
|
|
def __subclasscheck__(cls, other):
|
|
# Typed dicts are only for static structural subtyping.
|
|
raise TypeError('TypedDict does not support instance and class checks')
|
|
|
|
__instancecheck__ = __subclasscheck__
|
|
|
|
|
|
def TypedDict(typename, fields=_sentinel, /, *, total=True):
|
|
"""A simple typed namespace. At runtime it is equivalent to a plain dict.
|
|
|
|
TypedDict creates a dictionary type such that a type checker will expect all
|
|
instances to have a certain set of keys, where each key is
|
|
associated with a value of a consistent type. This expectation
|
|
is not checked at runtime.
|
|
|
|
Usage::
|
|
|
|
>>> class Point2D(TypedDict):
|
|
... x: int
|
|
... y: int
|
|
... label: str
|
|
...
|
|
>>> a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
|
|
>>> b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
|
|
>>> Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
|
|
True
|
|
|
|
The type info can be accessed via the Point2D.__annotations__ dict, and
|
|
the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.
|
|
TypedDict supports an additional equivalent form::
|
|
|
|
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
|
|
|
|
By default, all keys must be present in a TypedDict. It is possible
|
|
to override this by specifying totality::
|
|
|
|
class Point2D(TypedDict, total=False):
|
|
x: int
|
|
y: int
|
|
|
|
This means that a Point2D TypedDict can have any of the keys omitted. A type
|
|
checker is only expected to support a literal False or True as the value of
|
|
the total argument. True is the default, and makes all items defined in the
|
|
class body be required.
|
|
|
|
The Required and NotRequired special forms can also be used to mark
|
|
individual keys as being required or not required::
|
|
|
|
class Point2D(TypedDict):
|
|
x: int # the "x" key must always be present (Required is the default)
|
|
y: NotRequired[int] # the "y" key can be omitted
|
|
|
|
See PEP 655 for more details on Required and NotRequired.
|
|
|
|
The ReadOnly special form can be used
|
|
to mark individual keys as immutable for type checkers::
|
|
|
|
class DatabaseUser(TypedDict):
|
|
id: ReadOnly[int] # the "id" key must not be modified
|
|
username: str # the "username" key can be changed
|
|
|
|
"""
|
|
if fields is _sentinel or fields is None:
|
|
import warnings
|
|
|
|
if fields is _sentinel:
|
|
deprecated_thing = "Failing to pass a value for the 'fields' parameter"
|
|
else:
|
|
deprecated_thing = "Passing `None` as the 'fields' parameter"
|
|
|
|
example = f"`{typename} = TypedDict({typename!r}, {{{{}}}})`"
|
|
deprecation_msg = (
|
|
"{name} is deprecated and will be disallowed in Python {remove}. "
|
|
"To create a TypedDict class with 0 fields "
|
|
"using the functional syntax, "
|
|
"pass an empty dictionary, e.g. "
|
|
) + example + "."
|
|
warnings._deprecated(deprecated_thing, message=deprecation_msg, remove=(3, 15))
|
|
fields = {}
|
|
|
|
ns = {'__annotations__': dict(fields)}
|
|
module = _caller()
|
|
if module is not None:
|
|
# Setting correct module is necessary to make typed dict classes pickleable.
|
|
ns['__module__'] = module
|
|
|
|
td = _TypedDictMeta(typename, (), ns, total=total)
|
|
td.__orig_bases__ = (TypedDict,)
|
|
return td
|
|
|
|
_TypedDict = type.__new__(_TypedDictMeta, 'TypedDict', (), {})
|
|
TypedDict.__mro_entries__ = lambda bases: (_TypedDict,)
|
|
|
|
|
|
@_SpecialForm
|
|
def Required(self, parameters):
|
|
"""Special typing construct to mark a TypedDict key as required.
|
|
|
|
This is mainly useful for total=False TypedDicts.
|
|
|
|
For example::
|
|
|
|
class Movie(TypedDict, total=False):
|
|
title: Required[str]
|
|
year: int
|
|
|
|
m = Movie(
|
|
title='The Matrix', # typechecker error if key is omitted
|
|
year=1999,
|
|
)
|
|
|
|
There is no runtime checking that a required key is actually provided
|
|
when instantiating a related TypedDict.
|
|
"""
|
|
item = _type_check(parameters, f'{self._name} accepts only a single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
@_SpecialForm
|
|
def NotRequired(self, parameters):
|
|
"""Special typing construct to mark a TypedDict key as potentially missing.
|
|
|
|
For example::
|
|
|
|
class Movie(TypedDict):
|
|
title: str
|
|
year: NotRequired[int]
|
|
|
|
m = Movie(
|
|
title='The Matrix', # typechecker error if key is omitted
|
|
year=1999,
|
|
)
|
|
"""
|
|
item = _type_check(parameters, f'{self._name} accepts only a single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
@_SpecialForm
|
|
def ReadOnly(self, parameters):
|
|
"""A special typing construct to mark an item of a TypedDict as read-only.
|
|
|
|
For example::
|
|
|
|
class Movie(TypedDict):
|
|
title: ReadOnly[str]
|
|
year: int
|
|
|
|
def mutate_movie(m: Movie) -> None:
|
|
m["year"] = 1992 # allowed
|
|
m["title"] = "The Matrix" # typechecker error
|
|
|
|
There is no runtime checking for this property.
|
|
"""
|
|
item = _type_check(parameters, f'{self._name} accepts only a single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
class NewType:
|
|
"""NewType creates simple unique types with almost zero runtime overhead.
|
|
|
|
NewType(name, tp) is considered a subtype of tp
|
|
by static type checkers. At runtime, NewType(name, tp) returns
|
|
a dummy callable that simply returns its argument.
|
|
|
|
Usage::
|
|
|
|
UserId = NewType('UserId', int)
|
|
|
|
def name_by_id(user_id: UserId) -> str:
|
|
...
|
|
|
|
UserId('user') # Fails type check
|
|
|
|
name_by_id(42) # Fails type check
|
|
name_by_id(UserId(42)) # OK
|
|
|
|
num = UserId(5) + 1 # type: int
|
|
"""
|
|
|
|
__call__ = _idfunc
|
|
|
|
def __init__(self, name, tp):
|
|
self.__qualname__ = name
|
|
if '.' in name:
|
|
name = name.rpartition('.')[-1]
|
|
self.__name__ = name
|
|
self.__supertype__ = tp
|
|
def_mod = _caller()
|
|
if def_mod != 'typing':
|
|
self.__module__ = def_mod
|
|
|
|
def __mro_entries__(self, bases):
|
|
# We defined __mro_entries__ to get a better error message
|
|
# if a user attempts to subclass a NewType instance. bpo-46170
|
|
superclass_name = self.__name__
|
|
|
|
class Dummy:
|
|
def __init_subclass__(cls):
|
|
subclass_name = cls.__name__
|
|
raise TypeError(
|
|
f"Cannot subclass an instance of NewType. Perhaps you were looking for: "
|
|
f"`{subclass_name} = NewType({subclass_name!r}, {superclass_name})`"
|
|
)
|
|
|
|
return (Dummy,)
|
|
|
|
def __repr__(self):
|
|
return f'{self.__module__}.{self.__qualname__}'
|
|
|
|
def __reduce__(self):
|
|
return self.__qualname__
|
|
|
|
def __or__(self, other):
|
|
return Union[self, other]
|
|
|
|
def __ror__(self, other):
|
|
return Union[other, self]
|
|
|
|
|
|
# Python-version-specific alias (Python 2: unicode; Python 3: str)
|
|
Text = str
|
|
|
|
|
|
# Constant that's True when type checking, but False here.
|
|
TYPE_CHECKING = False
|
|
|
|
|
|
class IO(Generic[AnyStr]):
|
|
"""Generic base class for TextIO and BinaryIO.
|
|
|
|
This is an abstract, generic version of the return of open().
|
|
|
|
NOTE: This does not distinguish between the different possible
|
|
classes (text vs. binary, read vs. write vs. read/write,
|
|
append-only, unbuffered). The TextIO and BinaryIO subclasses
|
|
below capture the distinctions between text vs. binary, which is
|
|
pervasive in the interface; however we currently do not offer a
|
|
way to track the other distinctions in the type system.
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
@property
|
|
@abstractmethod
|
|
def mode(self) -> str:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def name(self) -> str:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def close(self) -> None:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def closed(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def fileno(self) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def flush(self) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def isatty(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def read(self, n: int = -1) -> AnyStr:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def readable(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def readline(self, limit: int = -1) -> AnyStr:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def readlines(self, hint: int = -1) -> List[AnyStr]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def seek(self, offset: int, whence: int = 0) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def seekable(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def tell(self) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def truncate(self, size: int = None) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def writable(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def write(self, s: AnyStr) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def writelines(self, lines: List[AnyStr]) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __enter__(self) -> 'IO[AnyStr]':
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __exit__(self, type, value, traceback) -> None:
|
|
pass
|
|
|
|
|
|
class BinaryIO(IO[bytes]):
|
|
"""Typed version of the return of open() in binary mode."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def write(self, s: Union[bytes, bytearray]) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __enter__(self) -> 'BinaryIO':
|
|
pass
|
|
|
|
|
|
class TextIO(IO[str]):
|
|
"""Typed version of the return of open() in text mode."""
|
|
|
|
__slots__ = ()
|
|
|
|
@property
|
|
@abstractmethod
|
|
def buffer(self) -> BinaryIO:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def encoding(self) -> str:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def errors(self) -> Optional[str]:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def line_buffering(self) -> bool:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def newlines(self) -> Any:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __enter__(self) -> 'TextIO':
|
|
pass
|
|
|
|
|
|
def reveal_type[T](obj: T, /) -> T:
|
|
"""Ask a static type checker to reveal the inferred type of an expression.
|
|
|
|
When a static type checker encounters a call to ``reveal_type()``,
|
|
it will emit the inferred type of the argument::
|
|
|
|
x: int = 1
|
|
reveal_type(x)
|
|
|
|
Running a static type checker (e.g., mypy) on this example
|
|
will produce output similar to 'Revealed type is "builtins.int"'.
|
|
|
|
At runtime, the function prints the runtime type of the
|
|
argument and returns the argument unchanged.
|
|
"""
|
|
print(f"Runtime type is {type(obj).__name__!r}", file=sys.stderr)
|
|
return obj
|
|
|
|
|
|
class _IdentityCallable(Protocol):
|
|
def __call__[T](self, arg: T, /) -> T:
|
|
...
|
|
|
|
|
|
def dataclass_transform(
|
|
*,
|
|
eq_default: bool = True,
|
|
order_default: bool = False,
|
|
kw_only_default: bool = False,
|
|
frozen_default: bool = False,
|
|
field_specifiers: tuple[type[Any] | Callable[..., Any], ...] = (),
|
|
**kwargs: Any,
|
|
) -> _IdentityCallable:
|
|
"""Decorator to mark an object as providing dataclass-like behaviour.
|
|
|
|
The decorator can be applied to a function, class, or metaclass.
|
|
|
|
Example usage with a decorator function::
|
|
|
|
@dataclass_transform()
|
|
def create_model[T](cls: type[T]) -> type[T]:
|
|
...
|
|
return cls
|
|
|
|
@create_model
|
|
class CustomerModel:
|
|
id: int
|
|
name: str
|
|
|
|
On a base class::
|
|
|
|
@dataclass_transform()
|
|
class ModelBase: ...
|
|
|
|
class CustomerModel(ModelBase):
|
|
id: int
|
|
name: str
|
|
|
|
On a metaclass::
|
|
|
|
@dataclass_transform()
|
|
class ModelMeta(type): ...
|
|
|
|
class ModelBase(metaclass=ModelMeta): ...
|
|
|
|
class CustomerModel(ModelBase):
|
|
id: int
|
|
name: str
|
|
|
|
The ``CustomerModel`` classes defined above will
|
|
be treated by type checkers similarly to classes created with
|
|
``@dataclasses.dataclass``.
|
|
For example, type checkers will assume these classes have
|
|
``__init__`` methods that accept ``id`` and ``name``.
|
|
|
|
The arguments to this decorator can be used to customize this behavior:
|
|
- ``eq_default`` indicates whether the ``eq`` parameter is assumed to be
|
|
``True`` or ``False`` if it is omitted by the caller.
|
|
- ``order_default`` indicates whether the ``order`` parameter is
|
|
assumed to be True or False if it is omitted by the caller.
|
|
- ``kw_only_default`` indicates whether the ``kw_only`` parameter is
|
|
assumed to be True or False if it is omitted by the caller.
|
|
- ``frozen_default`` indicates whether the ``frozen`` parameter is
|
|
assumed to be True or False if it is omitted by the caller.
|
|
- ``field_specifiers`` specifies a static list of supported classes
|
|
or functions that describe fields, similar to ``dataclasses.field()``.
|
|
- Arbitrary other keyword arguments are accepted in order to allow for
|
|
possible future extensions.
|
|
|
|
At runtime, this decorator records its arguments in the
|
|
``__dataclass_transform__`` attribute on the decorated object.
|
|
It has no other runtime effect.
|
|
|
|
See PEP 681 for more details.
|
|
"""
|
|
def decorator(cls_or_fn):
|
|
cls_or_fn.__dataclass_transform__ = {
|
|
"eq_default": eq_default,
|
|
"order_default": order_default,
|
|
"kw_only_default": kw_only_default,
|
|
"frozen_default": frozen_default,
|
|
"field_specifiers": field_specifiers,
|
|
"kwargs": kwargs,
|
|
}
|
|
return cls_or_fn
|
|
return decorator
|
|
|
|
|
|
type _Func = Callable[..., Any]
|
|
|
|
|
|
def override[F: _Func](method: F, /) -> F:
|
|
"""Indicate that a method is intended to override a method in a base class.
|
|
|
|
Usage::
|
|
|
|
class Base:
|
|
def method(self) -> None:
|
|
pass
|
|
|
|
class Child(Base):
|
|
@override
|
|
def method(self) -> None:
|
|
super().method()
|
|
|
|
When this decorator is applied to a method, the type checker will
|
|
validate that it overrides a method or attribute with the same name on a
|
|
base class. This helps prevent bugs that may occur when a base class is
|
|
changed without an equivalent change to a child class.
|
|
|
|
There is no runtime checking of this property. The decorator attempts to
|
|
set the ``__override__`` attribute to ``True`` on the decorated object to
|
|
allow runtime introspection.
|
|
|
|
See PEP 698 for details.
|
|
"""
|
|
try:
|
|
method.__override__ = True
|
|
except (AttributeError, TypeError):
|
|
# Skip the attribute silently if it is not writable.
|
|
# AttributeError happens if the object has __slots__ or a
|
|
# read-only property, TypeError if it's a builtin class.
|
|
pass
|
|
return method
|
|
|
|
|
|
def is_protocol(tp: type, /) -> bool:
|
|
"""Return True if the given type is a Protocol.
|
|
|
|
Example::
|
|
|
|
>>> from typing import Protocol, is_protocol
|
|
>>> class P(Protocol):
|
|
... def a(self) -> str: ...
|
|
... b: int
|
|
>>> is_protocol(P)
|
|
True
|
|
>>> is_protocol(int)
|
|
False
|
|
"""
|
|
return (
|
|
isinstance(tp, type)
|
|
and getattr(tp, '_is_protocol', False)
|
|
and tp != Protocol
|
|
)
|
|
|
|
|
|
def get_protocol_members(tp: type, /) -> frozenset[str]:
|
|
"""Return the set of members defined in a Protocol.
|
|
|
|
Example::
|
|
|
|
>>> from typing import Protocol, get_protocol_members
|
|
>>> class P(Protocol):
|
|
... def a(self) -> str: ...
|
|
... b: int
|
|
>>> get_protocol_members(P) == frozenset({'a', 'b'})
|
|
True
|
|
|
|
Raise a TypeError for arguments that are not Protocols.
|
|
"""
|
|
if not is_protocol(tp):
|
|
raise TypeError(f'{tp!r} is not a Protocol')
|
|
return frozenset(tp.__protocol_attrs__)
|
|
|
|
|
|
def __getattr__(attr):
|
|
"""Improve the import time of the typing module.
|
|
|
|
Soft-deprecated objects which are costly to create
|
|
are only created on-demand here.
|
|
"""
|
|
if attr in {"Pattern", "Match"}:
|
|
import re
|
|
obj = _alias(getattr(re, attr), 1)
|
|
elif attr in {"ContextManager", "AsyncContextManager"}:
|
|
import contextlib
|
|
obj = _alias(getattr(contextlib, f"Abstract{attr}"), 2, name=attr, defaults=(bool | None,))
|
|
elif attr == "_collect_parameters":
|
|
import warnings
|
|
|
|
depr_message = (
|
|
"The private _collect_parameters function is deprecated and will be"
|
|
" removed in a future version of Python. Any use of private functions"
|
|
" is discouraged and may break in the future."
|
|
)
|
|
warnings.warn(depr_message, category=DeprecationWarning, stacklevel=2)
|
|
obj = _collect_type_parameters
|
|
else:
|
|
raise AttributeError(f"module {__name__!r} has no attribute {attr!r}")
|
|
globals()[attr] = obj
|
|
return obj
|