mirror of https://github.com/python/cpython.git
2109 lines
48 KiB
C
2109 lines
48 KiB
C
|
|
/* Generic object operations; and implementation of None (NoObject) */
|
|
|
|
#include "Python.h"
|
|
|
|
#ifdef macintosh
|
|
#include "macglue.h"
|
|
#endif
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
long _Py_RefTotal;
|
|
#endif
|
|
|
|
int Py_DivisionWarningFlag;
|
|
|
|
/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
|
|
These are used by the individual routines for object creation.
|
|
Do not call them otherwise, they do not initialize the object! */
|
|
|
|
#ifdef COUNT_ALLOCS
|
|
static PyTypeObject *type_list;
|
|
extern int tuple_zero_allocs, fast_tuple_allocs;
|
|
extern int quick_int_allocs, quick_neg_int_allocs;
|
|
extern int null_strings, one_strings;
|
|
void
|
|
dump_counts(void)
|
|
{
|
|
PyTypeObject *tp;
|
|
|
|
for (tp = type_list; tp; tp = tp->tp_next)
|
|
fprintf(stderr, "%s alloc'd: %d, freed: %d, max in use: %d\n",
|
|
tp->tp_name, tp->tp_allocs, tp->tp_frees,
|
|
tp->tp_maxalloc);
|
|
fprintf(stderr, "fast tuple allocs: %d, empty: %d\n",
|
|
fast_tuple_allocs, tuple_zero_allocs);
|
|
fprintf(stderr, "fast int allocs: pos: %d, neg: %d\n",
|
|
quick_int_allocs, quick_neg_int_allocs);
|
|
fprintf(stderr, "null strings: %d, 1-strings: %d\n",
|
|
null_strings, one_strings);
|
|
}
|
|
|
|
PyObject *
|
|
get_counts(void)
|
|
{
|
|
PyTypeObject *tp;
|
|
PyObject *result;
|
|
PyObject *v;
|
|
|
|
result = PyList_New(0);
|
|
if (result == NULL)
|
|
return NULL;
|
|
for (tp = type_list; tp; tp = tp->tp_next) {
|
|
v = Py_BuildValue("(siii)", tp->tp_name, tp->tp_allocs,
|
|
tp->tp_frees, tp->tp_maxalloc);
|
|
if (v == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
if (PyList_Append(result, v) < 0) {
|
|
Py_DECREF(v);
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(v);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void
|
|
inc_count(PyTypeObject *tp)
|
|
{
|
|
if (tp->tp_allocs == 0) {
|
|
/* first time; insert in linked list */
|
|
if (tp->tp_next != NULL) /* sanity check */
|
|
Py_FatalError("XXX inc_count sanity check");
|
|
tp->tp_next = type_list;
|
|
/* Note that as of Python 2.2, heap-allocated type objects
|
|
* can go away, but this code requires that they stay alive
|
|
* until program exit. That's why we're careful with
|
|
* refcounts here. type_list gets a new reference to tp,
|
|
* while ownership of the reference type_list used to hold
|
|
* (if any) was transferred to tp->tp_next in the line above.
|
|
* tp is thus effectively immortal after this.
|
|
*/
|
|
Py_INCREF(tp);
|
|
type_list = tp;
|
|
}
|
|
tp->tp_allocs++;
|
|
if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
|
|
tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
|
|
}
|
|
#endif
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
/* Log a fatal error; doesn't return. */
|
|
void
|
|
_Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
|
|
{
|
|
char buf[300];
|
|
|
|
PyOS_snprintf(buf, sizeof(buf),
|
|
"%s:%i object at %p has negative ref count %i",
|
|
fname, lineno, op, op->ob_refcnt);
|
|
Py_FatalError(buf);
|
|
}
|
|
|
|
#endif /* Py_REF_DEBUG */
|
|
|
|
PyObject *
|
|
PyObject_Init(PyObject *op, PyTypeObject *tp)
|
|
{
|
|
if (op == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"NULL object passed to PyObject_Init");
|
|
return op;
|
|
}
|
|
/* Any changes should be reflected in PyObject_INIT (objimpl.h) */
|
|
op->ob_type = tp;
|
|
_Py_NewReference(op);
|
|
return op;
|
|
}
|
|
|
|
PyVarObject *
|
|
PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, int size)
|
|
{
|
|
if (op == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"NULL object passed to PyObject_InitVar");
|
|
return op;
|
|
}
|
|
/* Any changes should be reflected in PyObject_INIT_VAR */
|
|
op->ob_size = size;
|
|
op->ob_type = tp;
|
|
_Py_NewReference((PyObject *)op);
|
|
return op;
|
|
}
|
|
|
|
PyObject *
|
|
_PyObject_New(PyTypeObject *tp)
|
|
{
|
|
PyObject *op;
|
|
op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
|
|
if (op == NULL)
|
|
return PyErr_NoMemory();
|
|
return PyObject_INIT(op, tp);
|
|
}
|
|
|
|
PyVarObject *
|
|
_PyObject_NewVar(PyTypeObject *tp, int nitems)
|
|
{
|
|
PyVarObject *op;
|
|
const size_t size = _PyObject_VAR_SIZE(tp, nitems);
|
|
op = (PyVarObject *) PyObject_MALLOC(size);
|
|
if (op == NULL)
|
|
return (PyVarObject *)PyErr_NoMemory();
|
|
return PyObject_INIT_VAR(op, tp, nitems);
|
|
}
|
|
|
|
/* for binary compatibility with 2.2 */
|
|
#undef _PyObject_Del
|
|
void
|
|
_PyObject_Del(PyObject *op)
|
|
{
|
|
PyObject_FREE(op);
|
|
}
|
|
|
|
int
|
|
PyObject_Print(PyObject *op, FILE *fp, int flags)
|
|
{
|
|
int ret = 0;
|
|
if (PyErr_CheckSignals())
|
|
return -1;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return -1;
|
|
}
|
|
#endif
|
|
clearerr(fp); /* Clear any previous error condition */
|
|
if (op == NULL) {
|
|
fprintf(fp, "<nil>");
|
|
}
|
|
else {
|
|
if (op->ob_refcnt <= 0)
|
|
fprintf(fp, "<refcnt %u at %p>",
|
|
op->ob_refcnt, op);
|
|
else if (op->ob_type->tp_print == NULL) {
|
|
PyObject *s;
|
|
if (flags & Py_PRINT_RAW)
|
|
s = PyObject_Str(op);
|
|
else
|
|
s = PyObject_Repr(op);
|
|
if (s == NULL)
|
|
ret = -1;
|
|
else {
|
|
ret = PyObject_Print(s, fp, Py_PRINT_RAW);
|
|
}
|
|
Py_XDECREF(s);
|
|
}
|
|
else
|
|
ret = (*op->ob_type->tp_print)(op, fp, flags);
|
|
}
|
|
if (ret == 0) {
|
|
if (ferror(fp)) {
|
|
PyErr_SetFromErrno(PyExc_IOError);
|
|
clearerr(fp);
|
|
ret = -1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
|
|
void _PyObject_Dump(PyObject* op)
|
|
{
|
|
if (op == NULL)
|
|
fprintf(stderr, "NULL\n");
|
|
else {
|
|
fprintf(stderr, "object : ");
|
|
(void)PyObject_Print(op, stderr, 0);
|
|
fprintf(stderr, "\n"
|
|
"type : %s\n"
|
|
"refcount: %d\n"
|
|
"address : %p\n",
|
|
op->ob_type==NULL ? "NULL" : op->ob_type->tp_name,
|
|
op->ob_refcnt,
|
|
op);
|
|
}
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Repr(PyObject *v)
|
|
{
|
|
if (PyErr_CheckSignals())
|
|
return NULL;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return NULL;
|
|
}
|
|
#endif
|
|
if (v == NULL)
|
|
return PyString_FromString("<NULL>");
|
|
else if (v->ob_type->tp_repr == NULL)
|
|
return PyString_FromFormat("<%s object at %p>",
|
|
v->ob_type->tp_name, v);
|
|
else {
|
|
PyObject *res;
|
|
res = (*v->ob_type->tp_repr)(v);
|
|
if (res == NULL)
|
|
return NULL;
|
|
#ifdef Py_USING_UNICODE
|
|
if (PyUnicode_Check(res)) {
|
|
PyObject* str;
|
|
str = PyUnicode_AsUnicodeEscapeString(res);
|
|
Py_DECREF(res);
|
|
if (str)
|
|
res = str;
|
|
else
|
|
return NULL;
|
|
}
|
|
#endif
|
|
if (!PyString_Check(res)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__repr__ returned non-string (type %.200s)",
|
|
res->ob_type->tp_name);
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Str(PyObject *v)
|
|
{
|
|
PyObject *res;
|
|
|
|
if (v == NULL)
|
|
return PyString_FromString("<NULL>");
|
|
if (PyString_CheckExact(v)) {
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
if (v->ob_type->tp_str == NULL)
|
|
return PyObject_Repr(v);
|
|
|
|
res = (*v->ob_type->tp_str)(v);
|
|
if (res == NULL)
|
|
return NULL;
|
|
#ifdef Py_USING_UNICODE
|
|
if (PyUnicode_Check(res)) {
|
|
PyObject* str;
|
|
str = PyUnicode_AsEncodedString(res, NULL, NULL);
|
|
Py_DECREF(res);
|
|
if (str)
|
|
res = str;
|
|
else
|
|
return NULL;
|
|
}
|
|
#endif
|
|
if (!PyString_Check(res)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__str__ returned non-string (type %.200s)",
|
|
res->ob_type->tp_name);
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#ifdef Py_USING_UNICODE
|
|
PyObject *
|
|
PyObject_Unicode(PyObject *v)
|
|
{
|
|
PyObject *res;
|
|
|
|
if (v == NULL)
|
|
res = PyString_FromString("<NULL>");
|
|
if (PyUnicode_CheckExact(v)) {
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
if (PyUnicode_Check(v)) {
|
|
/* For a Unicode subtype that's not a Unicode object,
|
|
return a true Unicode object with the same data. */
|
|
return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v),
|
|
PyUnicode_GET_SIZE(v));
|
|
}
|
|
if (PyString_Check(v)) {
|
|
Py_INCREF(v);
|
|
res = v;
|
|
}
|
|
else {
|
|
PyObject *func;
|
|
static PyObject *unicodestr;
|
|
/* XXX As soon as we have a tp_unicode slot, we should
|
|
check this before trying the __unicode__
|
|
method. */
|
|
if (unicodestr == NULL) {
|
|
unicodestr= PyString_InternFromString(
|
|
"__unicode__");
|
|
if (unicodestr == NULL)
|
|
return NULL;
|
|
}
|
|
func = PyObject_GetAttr(v, unicodestr);
|
|
if (func != NULL) {
|
|
res = PyEval_CallObject(func, (PyObject *)NULL);
|
|
Py_DECREF(func);
|
|
}
|
|
else {
|
|
PyErr_Clear();
|
|
if (v->ob_type->tp_str != NULL)
|
|
res = (*v->ob_type->tp_str)(v);
|
|
else
|
|
res = PyObject_Repr(v);
|
|
}
|
|
}
|
|
if (res == NULL)
|
|
return NULL;
|
|
if (!PyUnicode_Check(res)) {
|
|
PyObject *str;
|
|
str = PyUnicode_FromEncodedObject(res, NULL, "strict");
|
|
Py_DECREF(res);
|
|
if (str)
|
|
res = str;
|
|
else
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Helper to warn about deprecated tp_compare return values. Return:
|
|
-2 for an exception;
|
|
-1 if v < w;
|
|
0 if v == w;
|
|
1 if v > w.
|
|
(This function cannot return 2.)
|
|
*/
|
|
static int
|
|
adjust_tp_compare(int c)
|
|
{
|
|
if (PyErr_Occurred()) {
|
|
if (c != -1 && c != -2) {
|
|
PyObject *t, *v, *tb;
|
|
PyErr_Fetch(&t, &v, &tb);
|
|
if (PyErr_Warn(PyExc_RuntimeWarning,
|
|
"tp_compare didn't return -1 or -2 "
|
|
"for exception") < 0) {
|
|
Py_XDECREF(t);
|
|
Py_XDECREF(v);
|
|
Py_XDECREF(tb);
|
|
}
|
|
else
|
|
PyErr_Restore(t, v, tb);
|
|
}
|
|
return -2;
|
|
}
|
|
else if (c < -1 || c > 1) {
|
|
if (PyErr_Warn(PyExc_RuntimeWarning,
|
|
"tp_compare didn't return -1, 0 or 1") < 0)
|
|
return -2;
|
|
else
|
|
return c < -1 ? -1 : 1;
|
|
}
|
|
else {
|
|
assert(c >= -1 && c <= 1);
|
|
return c;
|
|
}
|
|
}
|
|
|
|
|
|
/* Macro to get the tp_richcompare field of a type if defined */
|
|
#define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
|
|
? (t)->tp_richcompare : NULL)
|
|
|
|
/* Map rich comparison operators to their swapped version, e.g. LT --> GT */
|
|
static int swapped_op[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
|
|
|
|
/* Try a genuine rich comparison, returning an object. Return:
|
|
NULL for exception;
|
|
NotImplemented if this particular rich comparison is not implemented or
|
|
undefined;
|
|
some object not equal to NotImplemented if it is implemented
|
|
(this latter object may not be a Boolean).
|
|
*/
|
|
static PyObject *
|
|
try_rich_compare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
richcmpfunc f;
|
|
PyObject *res;
|
|
|
|
if (v->ob_type != w->ob_type &&
|
|
PyType_IsSubtype(w->ob_type, v->ob_type) &&
|
|
(f = RICHCOMPARE(w->ob_type)) != NULL) {
|
|
res = (*f)(w, v, swapped_op[op]);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
if ((f = RICHCOMPARE(v->ob_type)) != NULL) {
|
|
res = (*f)(v, w, op);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
if ((f = RICHCOMPARE(w->ob_type)) != NULL) {
|
|
return (*f)(w, v, swapped_op[op]);
|
|
}
|
|
res = Py_NotImplemented;
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
/* Try a genuine rich comparison, returning an int. Return:
|
|
-1 for exception (including the case where try_rich_compare() returns an
|
|
object that's not a Boolean);
|
|
0 if the outcome is false;
|
|
1 if the outcome is true;
|
|
2 if this particular rich comparison is not implemented or undefined.
|
|
*/
|
|
static int
|
|
try_rich_compare_bool(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
int ok;
|
|
|
|
if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
|
|
return 2; /* Shortcut, avoid INCREF+DECREF */
|
|
res = try_rich_compare(v, w, op);
|
|
if (res == NULL)
|
|
return -1;
|
|
if (res == Py_NotImplemented) {
|
|
Py_DECREF(res);
|
|
return 2;
|
|
}
|
|
ok = PyObject_IsTrue(res);
|
|
Py_DECREF(res);
|
|
return ok;
|
|
}
|
|
|
|
/* Try rich comparisons to determine a 3-way comparison. Return:
|
|
-2 for an exception;
|
|
-1 if v < w;
|
|
0 if v == w;
|
|
1 if v > w;
|
|
2 if this particular rich comparison is not implemented or undefined.
|
|
*/
|
|
static int
|
|
try_rich_to_3way_compare(PyObject *v, PyObject *w)
|
|
{
|
|
static struct { int op; int outcome; } tries[3] = {
|
|
/* Try this operator, and if it is true, use this outcome: */
|
|
{Py_EQ, 0},
|
|
{Py_LT, -1},
|
|
{Py_GT, 1},
|
|
};
|
|
int i;
|
|
|
|
if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
|
|
return 2; /* Shortcut */
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
switch (try_rich_compare_bool(v, w, tries[i].op)) {
|
|
case -1:
|
|
return -2;
|
|
case 1:
|
|
return tries[i].outcome;
|
|
}
|
|
}
|
|
|
|
return 2;
|
|
}
|
|
|
|
/* Try a 3-way comparison, returning an int. Return:
|
|
-2 for an exception;
|
|
-1 if v < w;
|
|
0 if v == w;
|
|
1 if v > w;
|
|
2 if this particular 3-way comparison is not implemented or undefined.
|
|
*/
|
|
static int
|
|
try_3way_compare(PyObject *v, PyObject *w)
|
|
{
|
|
int c;
|
|
cmpfunc f;
|
|
|
|
/* Comparisons involving instances are given to instance_compare,
|
|
which has the same return conventions as this function. */
|
|
|
|
f = v->ob_type->tp_compare;
|
|
if (PyInstance_Check(v))
|
|
return (*f)(v, w);
|
|
if (PyInstance_Check(w))
|
|
return (*w->ob_type->tp_compare)(v, w);
|
|
|
|
/* If both have the same (non-NULL) tp_compare, use it. */
|
|
if (f != NULL && f == w->ob_type->tp_compare) {
|
|
c = (*f)(v, w);
|
|
return adjust_tp_compare(c);
|
|
}
|
|
|
|
/* If either tp_compare is _PyObject_SlotCompare, that's safe. */
|
|
if (f == _PyObject_SlotCompare ||
|
|
w->ob_type->tp_compare == _PyObject_SlotCompare)
|
|
return _PyObject_SlotCompare(v, w);
|
|
|
|
/* Try coercion; if it fails, give up */
|
|
c = PyNumber_CoerceEx(&v, &w);
|
|
if (c < 0)
|
|
return -2;
|
|
if (c > 0)
|
|
return 2;
|
|
|
|
/* Try v's comparison, if defined */
|
|
if ((f = v->ob_type->tp_compare) != NULL) {
|
|
c = (*f)(v, w);
|
|
Py_DECREF(v);
|
|
Py_DECREF(w);
|
|
return adjust_tp_compare(c);
|
|
}
|
|
|
|
/* Try w's comparison, if defined */
|
|
if ((f = w->ob_type->tp_compare) != NULL) {
|
|
c = (*f)(w, v); /* swapped! */
|
|
Py_DECREF(v);
|
|
Py_DECREF(w);
|
|
c = adjust_tp_compare(c);
|
|
if (c >= -1)
|
|
return -c; /* Swapped! */
|
|
else
|
|
return c;
|
|
}
|
|
|
|
/* No comparison defined */
|
|
Py_DECREF(v);
|
|
Py_DECREF(w);
|
|
return 2;
|
|
}
|
|
|
|
/* Final fallback 3-way comparison, returning an int. Return:
|
|
-2 if an error occurred;
|
|
-1 if v < w;
|
|
0 if v == w;
|
|
1 if v > w.
|
|
*/
|
|
static int
|
|
default_3way_compare(PyObject *v, PyObject *w)
|
|
{
|
|
int c;
|
|
char *vname, *wname;
|
|
|
|
if (v->ob_type == w->ob_type) {
|
|
/* When comparing these pointers, they must be cast to
|
|
* integer types (i.e. Py_uintptr_t, our spelling of C9X's
|
|
* uintptr_t). ANSI specifies that pointer compares other
|
|
* than == and != to non-related structures are undefined.
|
|
*/
|
|
Py_uintptr_t vv = (Py_uintptr_t)v;
|
|
Py_uintptr_t ww = (Py_uintptr_t)w;
|
|
return (vv < ww) ? -1 : (vv > ww) ? 1 : 0;
|
|
}
|
|
|
|
#ifdef Py_USING_UNICODE
|
|
/* Special case for Unicode */
|
|
if (PyUnicode_Check(v) || PyUnicode_Check(w)) {
|
|
c = PyUnicode_Compare(v, w);
|
|
if (!PyErr_Occurred())
|
|
return c;
|
|
/* TypeErrors are ignored: if Unicode coercion fails due
|
|
to one of the arguments not having the right type, we
|
|
continue as defined by the coercion protocol (see
|
|
above). Luckily, decoding errors are reported as
|
|
ValueErrors and are not masked by this technique. */
|
|
if (!PyErr_ExceptionMatches(PyExc_TypeError))
|
|
return -2;
|
|
PyErr_Clear();
|
|
}
|
|
#endif
|
|
|
|
/* None is smaller than anything */
|
|
if (v == Py_None)
|
|
return -1;
|
|
if (w == Py_None)
|
|
return 1;
|
|
|
|
/* different type: compare type names */
|
|
if (v->ob_type->tp_as_number)
|
|
vname = "";
|
|
else
|
|
vname = v->ob_type->tp_name;
|
|
if (w->ob_type->tp_as_number)
|
|
wname = "";
|
|
else
|
|
wname = w->ob_type->tp_name;
|
|
c = strcmp(vname, wname);
|
|
if (c < 0)
|
|
return -1;
|
|
if (c > 0)
|
|
return 1;
|
|
/* Same type name, or (more likely) incomparable numeric types */
|
|
return ((Py_uintptr_t)(v->ob_type) < (
|
|
Py_uintptr_t)(w->ob_type)) ? -1 : 1;
|
|
}
|
|
|
|
#define CHECK_TYPES(o) PyType_HasFeature((o)->ob_type, Py_TPFLAGS_CHECKTYPES)
|
|
|
|
/* Do a 3-way comparison, by hook or by crook. Return:
|
|
-2 for an exception (but see below);
|
|
-1 if v < w;
|
|
0 if v == w;
|
|
1 if v > w;
|
|
BUT: if the object implements a tp_compare function, it returns
|
|
whatever this function returns (whether with an exception or not).
|
|
*/
|
|
static int
|
|
do_cmp(PyObject *v, PyObject *w)
|
|
{
|
|
int c;
|
|
cmpfunc f;
|
|
|
|
if (v->ob_type == w->ob_type
|
|
&& (f = v->ob_type->tp_compare) != NULL) {
|
|
c = (*f)(v, w);
|
|
if (PyInstance_Check(v)) {
|
|
/* Instance tp_compare has a different signature.
|
|
But if it returns undefined we fall through. */
|
|
if (c != 2)
|
|
return c;
|
|
/* Else fall through to try_rich_to_3way_compare() */
|
|
}
|
|
else
|
|
return adjust_tp_compare(c);
|
|
}
|
|
/* We only get here if one of the following is true:
|
|
a) v and w have different types
|
|
b) v and w have the same type, which doesn't have tp_compare
|
|
c) v and w are instances, and either __cmp__ is not defined or
|
|
__cmp__ returns NotImplemented
|
|
*/
|
|
c = try_rich_to_3way_compare(v, w);
|
|
if (c < 2)
|
|
return c;
|
|
c = try_3way_compare(v, w);
|
|
if (c < 2)
|
|
return c;
|
|
return default_3way_compare(v, w);
|
|
}
|
|
|
|
/* compare_nesting is incremented before calling compare (for
|
|
some types) and decremented on exit. If the count exceeds the
|
|
nesting limit, enable code to detect circular data structures.
|
|
|
|
This is a tunable parameter that should only affect the performance
|
|
of comparisons, nothing else. Setting it high makes comparing deeply
|
|
nested non-cyclical data structures faster, but makes comparing cyclical
|
|
data structures slower.
|
|
*/
|
|
#define NESTING_LIMIT 20
|
|
|
|
static int compare_nesting = 0;
|
|
|
|
static PyObject*
|
|
get_inprogress_dict(void)
|
|
{
|
|
static PyObject *key;
|
|
PyObject *tstate_dict, *inprogress;
|
|
|
|
if (key == NULL) {
|
|
key = PyString_InternFromString("cmp_state");
|
|
if (key == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
tstate_dict = PyThreadState_GetDict();
|
|
if (tstate_dict == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
|
|
inprogress = PyDict_GetItem(tstate_dict, key);
|
|
if (inprogress == NULL) {
|
|
inprogress = PyDict_New();
|
|
if (inprogress == NULL)
|
|
return NULL;
|
|
if (PyDict_SetItem(tstate_dict, key, inprogress) == -1) {
|
|
Py_DECREF(inprogress);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(inprogress);
|
|
}
|
|
|
|
return inprogress;
|
|
}
|
|
|
|
static PyObject *
|
|
check_recursion(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *inprogress;
|
|
PyObject *token;
|
|
Py_uintptr_t iv = (Py_uintptr_t)v;
|
|
Py_uintptr_t iw = (Py_uintptr_t)w;
|
|
PyObject *x, *y, *z;
|
|
|
|
inprogress = get_inprogress_dict();
|
|
if (inprogress == NULL)
|
|
return NULL;
|
|
|
|
token = PyTuple_New(3);
|
|
if (token == NULL)
|
|
return NULL;
|
|
|
|
if (iv <= iw) {
|
|
PyTuple_SET_ITEM(token, 0, x = PyLong_FromVoidPtr((void *)v));
|
|
PyTuple_SET_ITEM(token, 1, y = PyLong_FromVoidPtr((void *)w));
|
|
if (op >= 0)
|
|
op = swapped_op[op];
|
|
} else {
|
|
PyTuple_SET_ITEM(token, 0, x = PyLong_FromVoidPtr((void *)w));
|
|
PyTuple_SET_ITEM(token, 1, y = PyLong_FromVoidPtr((void *)v));
|
|
}
|
|
PyTuple_SET_ITEM(token, 2, z = PyInt_FromLong((long)op));
|
|
if (x == NULL || y == NULL || z == NULL) {
|
|
Py_DECREF(token);
|
|
return NULL;
|
|
}
|
|
|
|
if (PyDict_GetItem(inprogress, token) != NULL) {
|
|
Py_DECREF(token);
|
|
return Py_None; /* Without INCREF! */
|
|
}
|
|
|
|
if (PyDict_SetItem(inprogress, token, token) < 0) {
|
|
Py_DECREF(token);
|
|
return NULL;
|
|
}
|
|
|
|
return token;
|
|
}
|
|
|
|
static void
|
|
delete_token(PyObject *token)
|
|
{
|
|
PyObject *inprogress;
|
|
|
|
if (token == NULL || token == Py_None)
|
|
return;
|
|
inprogress = get_inprogress_dict();
|
|
if (inprogress == NULL)
|
|
PyErr_Clear();
|
|
else
|
|
PyDict_DelItem(inprogress, token);
|
|
Py_DECREF(token);
|
|
}
|
|
|
|
/* Compare v to w. Return
|
|
-1 if v < w or exception (PyErr_Occurred() true in latter case).
|
|
0 if v == w.
|
|
1 if v > w.
|
|
XXX The docs (C API manual) say the return value is undefined in case
|
|
XXX of error.
|
|
*/
|
|
int
|
|
PyObject_Compare(PyObject *v, PyObject *w)
|
|
{
|
|
PyTypeObject *vtp;
|
|
int result;
|
|
|
|
#if defined(USE_STACKCHECK)
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "Stack overflow");
|
|
return -1;
|
|
}
|
|
#endif
|
|
if (v == NULL || w == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
if (v == w)
|
|
return 0;
|
|
vtp = v->ob_type;
|
|
compare_nesting++;
|
|
if (compare_nesting > NESTING_LIMIT &&
|
|
(vtp->tp_as_mapping
|
|
|| (vtp->tp_as_sequence
|
|
&& !PyString_Check(v)
|
|
&& !PyTuple_Check(v)))) {
|
|
/* try to detect circular data structures */
|
|
PyObject *token = check_recursion(v, w, -1);
|
|
|
|
if (token == NULL) {
|
|
result = -1;
|
|
}
|
|
else if (token == Py_None) {
|
|
/* already comparing these objects. assume
|
|
they're equal until shown otherwise */
|
|
result = 0;
|
|
}
|
|
else {
|
|
result = do_cmp(v, w);
|
|
delete_token(token);
|
|
}
|
|
}
|
|
else {
|
|
result = do_cmp(v, w);
|
|
}
|
|
compare_nesting--;
|
|
return result < 0 ? -1 : result;
|
|
}
|
|
|
|
/* Return (new reference to) Py_True or Py_False. */
|
|
static PyObject *
|
|
convert_3way_to_object(int op, int c)
|
|
{
|
|
PyObject *result;
|
|
switch (op) {
|
|
case Py_LT: c = c < 0; break;
|
|
case Py_LE: c = c <= 0; break;
|
|
case Py_EQ: c = c == 0; break;
|
|
case Py_NE: c = c != 0; break;
|
|
case Py_GT: c = c > 0; break;
|
|
case Py_GE: c = c >= 0; break;
|
|
}
|
|
result = c ? Py_True : Py_False;
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
/* We want a rich comparison but don't have one. Try a 3-way cmp instead.
|
|
Return
|
|
NULL if error
|
|
Py_True if v op w
|
|
Py_False if not (v op w)
|
|
*/
|
|
static PyObject *
|
|
try_3way_to_rich_compare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
int c;
|
|
|
|
c = try_3way_compare(v, w);
|
|
if (c >= 2)
|
|
c = default_3way_compare(v, w);
|
|
if (c <= -2)
|
|
return NULL;
|
|
return convert_3way_to_object(op, c);
|
|
}
|
|
|
|
/* Do rich comparison on v and w. Return
|
|
NULL if error
|
|
Else a new reference to an object other than Py_NotImplemented, usually(?):
|
|
Py_True if v op w
|
|
Py_False if not (v op w)
|
|
*/
|
|
static PyObject *
|
|
do_richcmp(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
|
|
res = try_rich_compare(v, w, op);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
|
|
return try_3way_to_rich_compare(v, w, op);
|
|
}
|
|
|
|
/* Return:
|
|
NULL for exception;
|
|
some object not equal to NotImplemented if it is implemented
|
|
(this latter object may not be a Boolean).
|
|
*/
|
|
PyObject *
|
|
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
|
|
assert(Py_LT <= op && op <= Py_GE);
|
|
|
|
compare_nesting++;
|
|
if (compare_nesting > NESTING_LIMIT &&
|
|
(v->ob_type->tp_as_mapping
|
|
|| (v->ob_type->tp_as_sequence
|
|
&& !PyString_Check(v)
|
|
&& !PyTuple_Check(v)))) {
|
|
|
|
/* try to detect circular data structures */
|
|
PyObject *token = check_recursion(v, w, op);
|
|
if (token == NULL) {
|
|
res = NULL;
|
|
goto Done;
|
|
}
|
|
else if (token == Py_None) {
|
|
/* already comparing these objects with this operator.
|
|
assume they're equal until shown otherwise */
|
|
if (op == Py_EQ)
|
|
res = Py_True;
|
|
else if (op == Py_NE)
|
|
res = Py_False;
|
|
else {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"can't order recursive values");
|
|
res = NULL;
|
|
}
|
|
Py_XINCREF(res);
|
|
}
|
|
else {
|
|
res = do_richcmp(v, w, op);
|
|
delete_token(token);
|
|
}
|
|
goto Done;
|
|
}
|
|
|
|
/* No nesting extremism.
|
|
If the types are equal, and not old-style instances, try to
|
|
get out cheap (don't bother with coercions etc.). */
|
|
if (v->ob_type == w->ob_type && !PyInstance_Check(v)) {
|
|
cmpfunc fcmp;
|
|
richcmpfunc frich = RICHCOMPARE(v->ob_type);
|
|
/* If the type has richcmp, try it first. try_rich_compare
|
|
tries it two-sided, which is not needed since we've a
|
|
single type only. */
|
|
if (frich != NULL) {
|
|
res = (*frich)(v, w, op);
|
|
if (res != Py_NotImplemented)
|
|
goto Done;
|
|
Py_DECREF(res);
|
|
}
|
|
/* No richcmp, or this particular richmp not implemented.
|
|
Try 3-way cmp. */
|
|
fcmp = v->ob_type->tp_compare;
|
|
if (fcmp != NULL) {
|
|
int c = (*fcmp)(v, w);
|
|
c = adjust_tp_compare(c);
|
|
if (c == -2) {
|
|
res = NULL;
|
|
goto Done;
|
|
}
|
|
res = convert_3way_to_object(op, c);
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
/* Fast path not taken, or couldn't deliver a useful result. */
|
|
res = do_richcmp(v, w, op);
|
|
Done:
|
|
compare_nesting--;
|
|
return res;
|
|
}
|
|
|
|
/* Return -1 if error; 1 if v op w; 0 if not (v op w). */
|
|
int
|
|
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res = PyObject_RichCompare(v, w, op);
|
|
int ok;
|
|
|
|
if (res == NULL)
|
|
return -1;
|
|
ok = PyObject_IsTrue(res);
|
|
Py_DECREF(res);
|
|
return ok;
|
|
}
|
|
|
|
/* Set of hash utility functions to help maintaining the invariant that
|
|
iff a==b then hash(a)==hash(b)
|
|
|
|
All the utility functions (_Py_Hash*()) return "-1" to signify an error.
|
|
*/
|
|
|
|
long
|
|
_Py_HashDouble(double v)
|
|
{
|
|
double intpart, fractpart;
|
|
int expo;
|
|
long hipart;
|
|
long x; /* the final hash value */
|
|
/* This is designed so that Python numbers of different types
|
|
* that compare equal hash to the same value; otherwise comparisons
|
|
* of mapping keys will turn out weird.
|
|
*/
|
|
|
|
#ifdef MPW /* MPW C modf expects pointer to extended as second argument */
|
|
{
|
|
extended e;
|
|
fractpart = modf(v, &e);
|
|
intpart = e;
|
|
}
|
|
#else
|
|
fractpart = modf(v, &intpart);
|
|
#endif
|
|
if (fractpart == 0.0) {
|
|
/* This must return the same hash as an equal int or long. */
|
|
if (intpart > LONG_MAX || -intpart > LONG_MAX) {
|
|
/* Convert to long and use its hash. */
|
|
PyObject *plong; /* converted to Python long */
|
|
if (Py_IS_INFINITY(intpart))
|
|
/* can't convert to long int -- arbitrary */
|
|
v = v < 0 ? -271828.0 : 314159.0;
|
|
plong = PyLong_FromDouble(v);
|
|
if (plong == NULL)
|
|
return -1;
|
|
x = PyObject_Hash(plong);
|
|
Py_DECREF(plong);
|
|
return x;
|
|
}
|
|
/* Fits in a C long == a Python int, so is its own hash. */
|
|
x = (long)intpart;
|
|
if (x == -1)
|
|
x = -2;
|
|
return x;
|
|
}
|
|
/* The fractional part is non-zero, so we don't have to worry about
|
|
* making this match the hash of some other type.
|
|
* Use frexp to get at the bits in the double.
|
|
* Since the VAX D double format has 56 mantissa bits, which is the
|
|
* most of any double format in use, each of these parts may have as
|
|
* many as (but no more than) 56 significant bits.
|
|
* So, assuming sizeof(long) >= 4, each part can be broken into two
|
|
* longs; frexp and multiplication are used to do that.
|
|
* Also, since the Cray double format has 15 exponent bits, which is
|
|
* the most of any double format in use, shifting the exponent field
|
|
* left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
|
|
*/
|
|
v = frexp(v, &expo);
|
|
v *= 2147483648.0; /* 2**31 */
|
|
hipart = (long)v; /* take the top 32 bits */
|
|
v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
|
|
x = hipart + (long)v + (expo << 15);
|
|
if (x == -1)
|
|
x = -2;
|
|
return x;
|
|
}
|
|
|
|
long
|
|
_Py_HashPointer(void *p)
|
|
{
|
|
#if SIZEOF_LONG >= SIZEOF_VOID_P
|
|
return (long)p;
|
|
#else
|
|
/* convert to a Python long and hash that */
|
|
PyObject* longobj;
|
|
long x;
|
|
|
|
if ((longobj = PyLong_FromVoidPtr(p)) == NULL) {
|
|
x = -1;
|
|
goto finally;
|
|
}
|
|
x = PyObject_Hash(longobj);
|
|
|
|
finally:
|
|
Py_XDECREF(longobj);
|
|
return x;
|
|
#endif
|
|
}
|
|
|
|
|
|
long
|
|
PyObject_Hash(PyObject *v)
|
|
{
|
|
PyTypeObject *tp = v->ob_type;
|
|
if (tp->tp_hash != NULL)
|
|
return (*tp->tp_hash)(v);
|
|
if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) {
|
|
return _Py_HashPointer(v); /* Use address as hash value */
|
|
}
|
|
/* If there's a cmp but no hash defined, the object can't be hashed */
|
|
PyErr_SetString(PyExc_TypeError, "unhashable type");
|
|
return -1;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GetAttrString(PyObject *v, char *name)
|
|
{
|
|
PyObject *w, *res;
|
|
|
|
if (v->ob_type->tp_getattr != NULL)
|
|
return (*v->ob_type->tp_getattr)(v, name);
|
|
w = PyString_InternFromString(name);
|
|
if (w == NULL)
|
|
return NULL;
|
|
res = PyObject_GetAttr(v, w);
|
|
Py_XDECREF(w);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
PyObject_HasAttrString(PyObject *v, char *name)
|
|
{
|
|
PyObject *res = PyObject_GetAttrString(v, name);
|
|
if (res != NULL) {
|
|
Py_DECREF(res);
|
|
return 1;
|
|
}
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyObject_SetAttrString(PyObject *v, char *name, PyObject *w)
|
|
{
|
|
PyObject *s;
|
|
int res;
|
|
|
|
if (v->ob_type->tp_setattr != NULL)
|
|
return (*v->ob_type->tp_setattr)(v, name, w);
|
|
s = PyString_InternFromString(name);
|
|
if (s == NULL)
|
|
return -1;
|
|
res = PyObject_SetAttr(v, s, w);
|
|
Py_XDECREF(s);
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GetAttr(PyObject *v, PyObject *name)
|
|
{
|
|
PyTypeObject *tp = v->ob_type;
|
|
|
|
if (!PyString_Check(name)) {
|
|
#ifdef Py_USING_UNICODE
|
|
/* The Unicode to string conversion is done here because the
|
|
existing tp_getattro slots expect a string object as name
|
|
and we wouldn't want to break those. */
|
|
if (PyUnicode_Check(name)) {
|
|
name = _PyUnicode_AsDefaultEncodedString(name, NULL);
|
|
if (name == NULL)
|
|
return NULL;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"attribute name must be string");
|
|
return NULL;
|
|
}
|
|
}
|
|
if (tp->tp_getattro != NULL)
|
|
return (*tp->tp_getattro)(v, name);
|
|
if (tp->tp_getattr != NULL)
|
|
return (*tp->tp_getattr)(v, PyString_AS_STRING(name));
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object has no attribute '%.400s'",
|
|
tp->tp_name, PyString_AS_STRING(name));
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
PyObject_HasAttr(PyObject *v, PyObject *name)
|
|
{
|
|
PyObject *res = PyObject_GetAttr(v, name);
|
|
if (res != NULL) {
|
|
Py_DECREF(res);
|
|
return 1;
|
|
}
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
|
|
{
|
|
PyTypeObject *tp = v->ob_type;
|
|
int err;
|
|
|
|
if (!PyString_Check(name)){
|
|
#ifdef Py_USING_UNICODE
|
|
/* The Unicode to string conversion is done here because the
|
|
existing tp_setattro slots expect a string object as name
|
|
and we wouldn't want to break those. */
|
|
if (PyUnicode_Check(name)) {
|
|
name = PyUnicode_AsEncodedString(name, NULL, NULL);
|
|
if (name == NULL)
|
|
return -1;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"attribute name must be string");
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
Py_INCREF(name);
|
|
|
|
PyString_InternInPlace(&name);
|
|
if (tp->tp_setattro != NULL) {
|
|
err = (*tp->tp_setattro)(v, name, value);
|
|
Py_DECREF(name);
|
|
return err;
|
|
}
|
|
if (tp->tp_setattr != NULL) {
|
|
err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value);
|
|
Py_DECREF(name);
|
|
return err;
|
|
}
|
|
Py_DECREF(name);
|
|
if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
|
|
PyErr_Format(PyExc_TypeError,
|
|
"'%.100s' object has no attributes "
|
|
"(%s .%.100s)",
|
|
tp->tp_name,
|
|
value==NULL ? "del" : "assign to",
|
|
PyString_AS_STRING(name));
|
|
else
|
|
PyErr_Format(PyExc_TypeError,
|
|
"'%.100s' object has only read-only attributes "
|
|
"(%s .%.100s)",
|
|
tp->tp_name,
|
|
value==NULL ? "del" : "assign to",
|
|
PyString_AS_STRING(name));
|
|
return -1;
|
|
}
|
|
|
|
/* Helper to get a pointer to an object's __dict__ slot, if any */
|
|
|
|
PyObject **
|
|
_PyObject_GetDictPtr(PyObject *obj)
|
|
{
|
|
long dictoffset;
|
|
PyTypeObject *tp = obj->ob_type;
|
|
|
|
if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS))
|
|
return NULL;
|
|
dictoffset = tp->tp_dictoffset;
|
|
if (dictoffset == 0)
|
|
return NULL;
|
|
if (dictoffset < 0) {
|
|
int tsize;
|
|
size_t size;
|
|
|
|
tsize = ((PyVarObject *)obj)->ob_size;
|
|
if (tsize < 0)
|
|
tsize = -tsize;
|
|
size = _PyObject_VAR_SIZE(tp, tsize);
|
|
|
|
dictoffset += (long)size;
|
|
assert(dictoffset > 0);
|
|
assert(dictoffset % SIZEOF_VOID_P == 0);
|
|
}
|
|
return (PyObject **) ((char *)obj + dictoffset);
|
|
}
|
|
|
|
/* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
|
|
|
|
PyObject *
|
|
PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
|
|
{
|
|
PyTypeObject *tp = obj->ob_type;
|
|
PyObject *descr;
|
|
PyObject *res = NULL;
|
|
descrgetfunc f;
|
|
PyObject **dictptr;
|
|
|
|
if (!PyString_Check(name)){
|
|
#ifdef Py_USING_UNICODE
|
|
/* The Unicode to string conversion is done here because the
|
|
existing tp_setattro slots expect a string object as name
|
|
and we wouldn't want to break those. */
|
|
if (PyUnicode_Check(name)) {
|
|
name = PyUnicode_AsEncodedString(name, NULL, NULL);
|
|
if (name == NULL)
|
|
return NULL;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"attribute name must be string");
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
Py_INCREF(name);
|
|
|
|
if (tp->tp_dict == NULL) {
|
|
if (PyType_Ready(tp) < 0)
|
|
goto done;
|
|
}
|
|
|
|
descr = _PyType_Lookup(tp, name);
|
|
f = NULL;
|
|
if (descr != NULL) {
|
|
f = descr->ob_type->tp_descr_get;
|
|
if (f != NULL && PyDescr_IsData(descr)) {
|
|
res = f(descr, obj, (PyObject *)obj->ob_type);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
dictptr = _PyObject_GetDictPtr(obj);
|
|
if (dictptr != NULL) {
|
|
PyObject *dict = *dictptr;
|
|
if (dict != NULL) {
|
|
res = PyDict_GetItem(dict, name);
|
|
if (res != NULL) {
|
|
Py_INCREF(res);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (f != NULL) {
|
|
res = f(descr, obj, (PyObject *)obj->ob_type);
|
|
goto done;
|
|
}
|
|
|
|
if (descr != NULL) {
|
|
Py_INCREF(descr);
|
|
res = descr;
|
|
goto done;
|
|
}
|
|
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object has no attribute '%.400s'",
|
|
tp->tp_name, PyString_AS_STRING(name));
|
|
done:
|
|
Py_DECREF(name);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
|
|
{
|
|
PyTypeObject *tp = obj->ob_type;
|
|
PyObject *descr;
|
|
descrsetfunc f;
|
|
PyObject **dictptr;
|
|
int res = -1;
|
|
|
|
if (!PyString_Check(name)){
|
|
#ifdef Py_USING_UNICODE
|
|
/* The Unicode to string conversion is done here because the
|
|
existing tp_setattro slots expect a string object as name
|
|
and we wouldn't want to break those. */
|
|
if (PyUnicode_Check(name)) {
|
|
name = PyUnicode_AsEncodedString(name, NULL, NULL);
|
|
if (name == NULL)
|
|
return -1;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"attribute name must be string");
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
Py_INCREF(name);
|
|
|
|
if (tp->tp_dict == NULL) {
|
|
if (PyType_Ready(tp) < 0)
|
|
goto done;
|
|
}
|
|
|
|
descr = _PyType_Lookup(tp, name);
|
|
f = NULL;
|
|
if (descr != NULL) {
|
|
f = descr->ob_type->tp_descr_set;
|
|
if (f != NULL && PyDescr_IsData(descr)) {
|
|
res = f(descr, obj, value);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
dictptr = _PyObject_GetDictPtr(obj);
|
|
if (dictptr != NULL) {
|
|
PyObject *dict = *dictptr;
|
|
if (dict == NULL && value != NULL) {
|
|
dict = PyDict_New();
|
|
if (dict == NULL)
|
|
goto done;
|
|
*dictptr = dict;
|
|
}
|
|
if (dict != NULL) {
|
|
if (value == NULL)
|
|
res = PyDict_DelItem(dict, name);
|
|
else
|
|
res = PyDict_SetItem(dict, name, value);
|
|
if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
|
|
PyErr_SetObject(PyExc_AttributeError, name);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (f != NULL) {
|
|
res = f(descr, obj, value);
|
|
goto done;
|
|
}
|
|
|
|
if (descr == NULL) {
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object has no attribute '%.400s'",
|
|
tp->tp_name, PyString_AS_STRING(name));
|
|
goto done;
|
|
}
|
|
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object attribute '%.400s' is read-only",
|
|
tp->tp_name, PyString_AS_STRING(name));
|
|
done:
|
|
Py_DECREF(name);
|
|
return res;
|
|
}
|
|
|
|
/* Test a value used as condition, e.g., in a for or if statement.
|
|
Return -1 if an error occurred */
|
|
|
|
int
|
|
PyObject_IsTrue(PyObject *v)
|
|
{
|
|
int res;
|
|
if (v == Py_None)
|
|
return 0;
|
|
else if (v->ob_type->tp_as_number != NULL &&
|
|
v->ob_type->tp_as_number->nb_nonzero != NULL)
|
|
res = (*v->ob_type->tp_as_number->nb_nonzero)(v);
|
|
else if (v->ob_type->tp_as_mapping != NULL &&
|
|
v->ob_type->tp_as_mapping->mp_length != NULL)
|
|
res = (*v->ob_type->tp_as_mapping->mp_length)(v);
|
|
else if (v->ob_type->tp_as_sequence != NULL &&
|
|
v->ob_type->tp_as_sequence->sq_length != NULL)
|
|
res = (*v->ob_type->tp_as_sequence->sq_length)(v);
|
|
else
|
|
return 1;
|
|
return (res > 0) ? 1 : res;
|
|
}
|
|
|
|
/* equivalent of 'not v'
|
|
Return -1 if an error occurred */
|
|
|
|
int
|
|
PyObject_Not(PyObject *v)
|
|
{
|
|
int res;
|
|
res = PyObject_IsTrue(v);
|
|
if (res < 0)
|
|
return res;
|
|
return res == 0;
|
|
}
|
|
|
|
/* Coerce two numeric types to the "larger" one.
|
|
Increment the reference count on each argument.
|
|
Return value:
|
|
-1 if an error occurred;
|
|
0 if the coercion succeeded (and then the reference counts are increased);
|
|
1 if no coercion is possible (and no error is raised).
|
|
*/
|
|
int
|
|
PyNumber_CoerceEx(PyObject **pv, PyObject **pw)
|
|
{
|
|
register PyObject *v = *pv;
|
|
register PyObject *w = *pw;
|
|
int res;
|
|
|
|
/* Shortcut only for old-style types */
|
|
if (v->ob_type == w->ob_type &&
|
|
!PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES))
|
|
{
|
|
Py_INCREF(v);
|
|
Py_INCREF(w);
|
|
return 0;
|
|
}
|
|
if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) {
|
|
res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw);
|
|
if (res <= 0)
|
|
return res;
|
|
}
|
|
if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) {
|
|
res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv);
|
|
if (res <= 0)
|
|
return res;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Coerce two numeric types to the "larger" one.
|
|
Increment the reference count on each argument.
|
|
Return -1 and raise an exception if no coercion is possible
|
|
(and then no reference count is incremented).
|
|
*/
|
|
int
|
|
PyNumber_Coerce(PyObject **pv, PyObject **pw)
|
|
{
|
|
int err = PyNumber_CoerceEx(pv, pw);
|
|
if (err <= 0)
|
|
return err;
|
|
PyErr_SetString(PyExc_TypeError, "number coercion failed");
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* Test whether an object can be called */
|
|
|
|
int
|
|
PyCallable_Check(PyObject *x)
|
|
{
|
|
if (x == NULL)
|
|
return 0;
|
|
if (PyInstance_Check(x)) {
|
|
PyObject *call = PyObject_GetAttrString(x, "__call__");
|
|
if (call == NULL) {
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
/* Could test recursively but don't, for fear of endless
|
|
recursion if some joker sets self.__call__ = self */
|
|
Py_DECREF(call);
|
|
return 1;
|
|
}
|
|
else {
|
|
return x->ob_type->tp_call != NULL;
|
|
}
|
|
}
|
|
|
|
/* Helper for PyObject_Dir.
|
|
Merge the __dict__ of aclass into dict, and recursively also all
|
|
the __dict__s of aclass's base classes. The order of merging isn't
|
|
defined, as it's expected that only the final set of dict keys is
|
|
interesting.
|
|
Return 0 on success, -1 on error.
|
|
*/
|
|
|
|
static int
|
|
merge_class_dict(PyObject* dict, PyObject* aclass)
|
|
{
|
|
PyObject *classdict;
|
|
PyObject *bases;
|
|
|
|
assert(PyDict_Check(dict));
|
|
assert(aclass);
|
|
|
|
/* Merge in the type's dict (if any). */
|
|
classdict = PyObject_GetAttrString(aclass, "__dict__");
|
|
if (classdict == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
int status = PyDict_Update(dict, classdict);
|
|
Py_DECREF(classdict);
|
|
if (status < 0)
|
|
return -1;
|
|
}
|
|
|
|
/* Recursively merge in the base types' (if any) dicts. */
|
|
bases = PyObject_GetAttrString(aclass, "__bases__");
|
|
if (bases == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
/* We have no guarantee that bases is a real tuple */
|
|
int i, n;
|
|
n = PySequence_Size(bases); /* This better be right */
|
|
if (n < 0)
|
|
PyErr_Clear();
|
|
else {
|
|
for (i = 0; i < n; i++) {
|
|
PyObject *base = PySequence_GetItem(bases, i);
|
|
if (base == NULL) {
|
|
Py_DECREF(bases);
|
|
return -1;
|
|
}
|
|
if (merge_class_dict(dict, base) < 0) {
|
|
Py_DECREF(bases);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
Py_DECREF(bases);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir.
|
|
If obj has an attr named attrname that's a list, merge its string
|
|
elements into keys of dict.
|
|
Return 0 on success, -1 on error. Errors due to not finding the attr,
|
|
or the attr not being a list, are suppressed.
|
|
*/
|
|
|
|
static int
|
|
merge_list_attr(PyObject* dict, PyObject* obj, char *attrname)
|
|
{
|
|
PyObject *list;
|
|
int result = 0;
|
|
|
|
assert(PyDict_Check(dict));
|
|
assert(obj);
|
|
assert(attrname);
|
|
|
|
list = PyObject_GetAttrString(obj, attrname);
|
|
if (list == NULL)
|
|
PyErr_Clear();
|
|
|
|
else if (PyList_Check(list)) {
|
|
int i;
|
|
for (i = 0; i < PyList_GET_SIZE(list); ++i) {
|
|
PyObject *item = PyList_GET_ITEM(list, i);
|
|
if (PyString_Check(item)) {
|
|
result = PyDict_SetItem(dict, item, Py_None);
|
|
if (result < 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(list);
|
|
return result;
|
|
}
|
|
|
|
/* Like __builtin__.dir(arg). See bltinmodule.c's builtin_dir for the
|
|
docstring, which should be kept in synch with this implementation. */
|
|
|
|
PyObject *
|
|
PyObject_Dir(PyObject *arg)
|
|
{
|
|
/* Set exactly one of these non-NULL before the end. */
|
|
PyObject *result = NULL; /* result list */
|
|
PyObject *masterdict = NULL; /* result is masterdict.keys() */
|
|
|
|
/* If NULL arg, return the locals. */
|
|
if (arg == NULL) {
|
|
PyObject *locals = PyEval_GetLocals();
|
|
if (locals == NULL)
|
|
goto error;
|
|
result = PyDict_Keys(locals);
|
|
if (result == NULL)
|
|
goto error;
|
|
}
|
|
|
|
/* Elif this is some form of module, we only want its dict. */
|
|
else if (PyModule_Check(arg)) {
|
|
masterdict = PyObject_GetAttrString(arg, "__dict__");
|
|
if (masterdict == NULL)
|
|
goto error;
|
|
if (!PyDict_Check(masterdict)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"module.__dict__ is not a dictionary");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* Elif some form of type or class, grab its dict and its bases.
|
|
We deliberately don't suck up its __class__, as methods belonging
|
|
to the metaclass would probably be more confusing than helpful. */
|
|
else if (PyType_Check(arg) || PyClass_Check(arg)) {
|
|
masterdict = PyDict_New();
|
|
if (masterdict == NULL)
|
|
goto error;
|
|
if (merge_class_dict(masterdict, arg) < 0)
|
|
goto error;
|
|
}
|
|
|
|
/* Else look at its dict, and the attrs reachable from its class. */
|
|
else {
|
|
PyObject *itsclass;
|
|
/* Create a dict to start with. CAUTION: Not everything
|
|
responding to __dict__ returns a dict! */
|
|
masterdict = PyObject_GetAttrString(arg, "__dict__");
|
|
if (masterdict == NULL) {
|
|
PyErr_Clear();
|
|
masterdict = PyDict_New();
|
|
}
|
|
else if (!PyDict_Check(masterdict)) {
|
|
Py_DECREF(masterdict);
|
|
masterdict = PyDict_New();
|
|
}
|
|
else {
|
|
/* The object may have returned a reference to its
|
|
dict, so copy it to avoid mutating it. */
|
|
PyObject *temp = PyDict_Copy(masterdict);
|
|
Py_DECREF(masterdict);
|
|
masterdict = temp;
|
|
}
|
|
if (masterdict == NULL)
|
|
goto error;
|
|
|
|
/* Merge in __members__ and __methods__ (if any).
|
|
XXX Would like this to go away someday; for now, it's
|
|
XXX needed to get at im_self etc of method objects. */
|
|
if (merge_list_attr(masterdict, arg, "__members__") < 0)
|
|
goto error;
|
|
if (merge_list_attr(masterdict, arg, "__methods__") < 0)
|
|
goto error;
|
|
|
|
/* Merge in attrs reachable from its class.
|
|
CAUTION: Not all objects have a __class__ attr. */
|
|
itsclass = PyObject_GetAttrString(arg, "__class__");
|
|
if (itsclass == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
int status = merge_class_dict(masterdict, itsclass);
|
|
Py_DECREF(itsclass);
|
|
if (status < 0)
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
assert((result == NULL) ^ (masterdict == NULL));
|
|
if (masterdict != NULL) {
|
|
/* The result comes from its keys. */
|
|
assert(result == NULL);
|
|
result = PyDict_Keys(masterdict);
|
|
if (result == NULL)
|
|
goto error;
|
|
}
|
|
|
|
assert(result);
|
|
if (PyList_Sort(result) != 0)
|
|
goto error;
|
|
else
|
|
goto normal_return;
|
|
|
|
error:
|
|
Py_XDECREF(result);
|
|
result = NULL;
|
|
/* fall through */
|
|
normal_return:
|
|
Py_XDECREF(masterdict);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
NoObject is usable as a non-NULL undefined value, used by the macro None.
|
|
There is (and should be!) no way to create other objects of this type,
|
|
so there is exactly one (which is indestructible, by the way).
|
|
(XXX This type and the type of NotImplemented below should be unified.)
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
static PyObject *
|
|
none_repr(PyObject *op)
|
|
{
|
|
return PyString_FromString("None");
|
|
}
|
|
|
|
/* ARGUSED */
|
|
static void
|
|
none_dealloc(PyObject* ignore)
|
|
{
|
|
/* This should never get called, but we also don't want to SEGV if
|
|
* we accidently decref None out of existance.
|
|
*/
|
|
abort();
|
|
}
|
|
|
|
|
|
static PyTypeObject PyNone_Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"NoneType",
|
|
0,
|
|
0,
|
|
(destructor)none_dealloc, /*tp_dealloc*/ /*never called*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_compare*/
|
|
(reprfunc)none_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash */
|
|
};
|
|
|
|
PyObject _Py_NoneStruct = {
|
|
PyObject_HEAD_INIT(&PyNone_Type)
|
|
};
|
|
|
|
/* NotImplemented is an object that can be used to signal that an
|
|
operation is not implemented for the given type combination. */
|
|
|
|
static PyObject *
|
|
NotImplemented_repr(PyObject *op)
|
|
{
|
|
return PyString_FromString("NotImplemented");
|
|
}
|
|
|
|
static PyTypeObject PyNotImplemented_Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"NotImplementedType",
|
|
0,
|
|
0,
|
|
(destructor)none_dealloc, /*tp_dealloc*/ /*never called*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_compare*/
|
|
(reprfunc)NotImplemented_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash */
|
|
};
|
|
|
|
PyObject _Py_NotImplementedStruct = {
|
|
PyObject_HEAD_INIT(&PyNotImplemented_Type)
|
|
};
|
|
|
|
void
|
|
_Py_ReadyTypes(void)
|
|
{
|
|
if (PyType_Ready(&PyType_Type) < 0)
|
|
Py_FatalError("Can't initialize 'type'");
|
|
|
|
if (PyType_Ready(&PyBool_Type) < 0)
|
|
Py_FatalError("Can't initialize 'bool'");
|
|
|
|
if (PyType_Ready(&PyString_Type) < 0)
|
|
Py_FatalError("Can't initialize 'str'");
|
|
|
|
if (PyType_Ready(&PyList_Type) < 0)
|
|
Py_FatalError("Can't initialize 'list'");
|
|
|
|
if (PyType_Ready(&PyNone_Type) < 0)
|
|
Py_FatalError("Can't initialize type(None)");
|
|
|
|
if (PyType_Ready(&PyNotImplemented_Type) < 0)
|
|
Py_FatalError("Can't initialize type(NotImplemented)");
|
|
}
|
|
|
|
|
|
#ifdef Py_TRACE_REFS
|
|
|
|
static PyObject refchain = {&refchain, &refchain};
|
|
|
|
void
|
|
_Py_ResetReferences(void)
|
|
{
|
|
refchain._ob_prev = refchain._ob_next = &refchain;
|
|
_Py_RefTotal = 0;
|
|
}
|
|
|
|
void
|
|
_Py_NewReference(PyObject *op)
|
|
{
|
|
_Py_INC_REFTOTAL;
|
|
op->ob_refcnt = 1;
|
|
op->_ob_next = refchain._ob_next;
|
|
op->_ob_prev = &refchain;
|
|
refchain._ob_next->_ob_prev = op;
|
|
refchain._ob_next = op;
|
|
_Py_INC_TPALLOCS(op);
|
|
}
|
|
|
|
void
|
|
_Py_ForgetReference(register PyObject *op)
|
|
{
|
|
#ifdef SLOW_UNREF_CHECK
|
|
register PyObject *p;
|
|
#endif
|
|
if (op->ob_refcnt < 0)
|
|
Py_FatalError("UNREF negative refcnt");
|
|
if (op == &refchain ||
|
|
op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op)
|
|
Py_FatalError("UNREF invalid object");
|
|
#ifdef SLOW_UNREF_CHECK
|
|
for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
|
|
if (p == op)
|
|
break;
|
|
}
|
|
if (p == &refchain) /* Not found */
|
|
Py_FatalError("UNREF unknown object");
|
|
#endif
|
|
op->_ob_next->_ob_prev = op->_ob_prev;
|
|
op->_ob_prev->_ob_next = op->_ob_next;
|
|
op->_ob_next = op->_ob_prev = NULL;
|
|
_Py_INC_TPFREES(op);
|
|
}
|
|
|
|
void
|
|
_Py_Dealloc(PyObject *op)
|
|
{
|
|
destructor dealloc = op->ob_type->tp_dealloc;
|
|
_Py_ForgetReference(op);
|
|
(*dealloc)(op);
|
|
}
|
|
|
|
void
|
|
_Py_PrintReferences(FILE *fp)
|
|
{
|
|
PyObject *op;
|
|
fprintf(fp, "Remaining objects:\n");
|
|
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
|
|
fprintf(fp, "[%d] ", op->ob_refcnt);
|
|
if (PyObject_Print(op, fp, 0) != 0)
|
|
PyErr_Clear();
|
|
putc('\n', fp);
|
|
}
|
|
}
|
|
|
|
PyObject *
|
|
_Py_GetObjects(PyObject *self, PyObject *args)
|
|
{
|
|
int i, n;
|
|
PyObject *t = NULL;
|
|
PyObject *res, *op;
|
|
|
|
if (!PyArg_ParseTuple(args, "i|O", &n, &t))
|
|
return NULL;
|
|
op = refchain._ob_next;
|
|
res = PyList_New(0);
|
|
if (res == NULL)
|
|
return NULL;
|
|
for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
|
|
while (op == self || op == args || op == res || op == t ||
|
|
(t != NULL && op->ob_type != (PyTypeObject *) t)) {
|
|
op = op->_ob_next;
|
|
if (op == &refchain)
|
|
return res;
|
|
}
|
|
if (PyList_Append(res, op) < 0) {
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
op = op->_ob_next;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/* Hack to force loading of cobject.o */
|
|
PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
|
|
|
|
|
|
/* Hack to force loading of abstract.o */
|
|
int (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
|
|
|
|
|
|
/* Python's malloc wrappers (see pymem.h) */
|
|
|
|
void *
|
|
PyMem_Malloc(size_t nbytes)
|
|
{
|
|
return PyMem_MALLOC(nbytes);
|
|
}
|
|
|
|
void *
|
|
PyMem_Realloc(void *p, size_t nbytes)
|
|
{
|
|
return PyMem_REALLOC(p, nbytes);
|
|
}
|
|
|
|
void
|
|
PyMem_Free(void *p)
|
|
{
|
|
PyMem_FREE(p);
|
|
}
|
|
|
|
|
|
/* These methods are used to control infinite recursion in repr, str, print,
|
|
etc. Container objects that may recursively contain themselves,
|
|
e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
|
|
Py_ReprLeave() to avoid infinite recursion.
|
|
|
|
Py_ReprEnter() returns 0 the first time it is called for a particular
|
|
object and 1 every time thereafter. It returns -1 if an exception
|
|
occurred. Py_ReprLeave() has no return value.
|
|
|
|
See dictobject.c and listobject.c for examples of use.
|
|
*/
|
|
|
|
#define KEY "Py_Repr"
|
|
|
|
int
|
|
Py_ReprEnter(PyObject *obj)
|
|
{
|
|
PyObject *dict;
|
|
PyObject *list;
|
|
int i;
|
|
|
|
dict = PyThreadState_GetDict();
|
|
if (dict == NULL)
|
|
return -1;
|
|
list = PyDict_GetItemString(dict, KEY);
|
|
if (list == NULL) {
|
|
list = PyList_New(0);
|
|
if (list == NULL)
|
|
return -1;
|
|
if (PyDict_SetItemString(dict, KEY, list) < 0)
|
|
return -1;
|
|
Py_DECREF(list);
|
|
}
|
|
i = PyList_GET_SIZE(list);
|
|
while (--i >= 0) {
|
|
if (PyList_GET_ITEM(list, i) == obj)
|
|
return 1;
|
|
}
|
|
PyList_Append(list, obj);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
Py_ReprLeave(PyObject *obj)
|
|
{
|
|
PyObject *dict;
|
|
PyObject *list;
|
|
int i;
|
|
|
|
dict = PyThreadState_GetDict();
|
|
if (dict == NULL)
|
|
return;
|
|
list = PyDict_GetItemString(dict, KEY);
|
|
if (list == NULL || !PyList_Check(list))
|
|
return;
|
|
i = PyList_GET_SIZE(list);
|
|
/* Count backwards because we always expect obj to be list[-1] */
|
|
while (--i >= 0) {
|
|
if (PyList_GET_ITEM(list, i) == obj) {
|
|
PyList_SetSlice(list, i, i + 1, NULL);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Trashcan support. */
|
|
|
|
/* Current call-stack depth of tp_dealloc calls. */
|
|
int _PyTrash_delete_nesting = 0;
|
|
|
|
/* List of objects that still need to be cleaned up, singly linked via their
|
|
* gc headers' gc_prev pointers.
|
|
*/
|
|
PyObject *_PyTrash_delete_later = NULL;
|
|
|
|
/* Add op to the _PyTrash_delete_later list. Called when the current
|
|
* call-stack depth gets large. op must be a currently untracked gc'ed
|
|
* object, with refcount 0. Py_DECREF must already have been called on it.
|
|
*/
|
|
void
|
|
_PyTrash_deposit_object(PyObject *op)
|
|
{
|
|
assert(PyObject_IS_GC(op));
|
|
assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
|
|
assert(op->ob_refcnt == 0);
|
|
_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
|
|
_PyTrash_delete_later = op;
|
|
}
|
|
|
|
/* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
|
|
* the call-stack unwinds again.
|
|
*/
|
|
void
|
|
_PyTrash_destroy_chain(void)
|
|
{
|
|
while (_PyTrash_delete_later) {
|
|
PyObject *op = _PyTrash_delete_later;
|
|
destructor dealloc = op->ob_type->tp_dealloc;
|
|
|
|
_PyTrash_delete_later =
|
|
(PyObject*) _Py_AS_GC(op)->gc.gc_prev;
|
|
|
|
/* Call the deallocator directly. This used to try to
|
|
* fool Py_DECREF into calling it indirectly, but
|
|
* Py_DECREF was already called on this object, and in
|
|
* assorted non-release builds calling Py_DECREF again ends
|
|
* up distorting allocation statistics.
|
|
*/
|
|
assert(op->ob_refcnt == 0);
|
|
++_PyTrash_delete_nesting;
|
|
(*dealloc)(op);
|
|
--_PyTrash_delete_nesting;
|
|
}
|
|
}
|