mirror of https://github.com/python/cpython.git
427 lines
14 KiB
C
427 lines
14 KiB
C
/* A fuzz test for CPython.
|
|
|
|
The only exposed function is LLVMFuzzerTestOneInput, which is called by
|
|
fuzzers and by the _fuzz module for smoke tests.
|
|
|
|
To build exactly one fuzz test, as when running in oss-fuzz etc.,
|
|
build with -D _Py_FUZZ_ONE and -D _Py_FUZZ_<test_name>. e.g. to build
|
|
LLVMFuzzerTestOneInput to only run "fuzz_builtin_float", build this file with
|
|
-D _Py_FUZZ_ONE -D _Py_FUZZ_fuzz_builtin_float.
|
|
|
|
See the source code for LLVMFuzzerTestOneInput for details. */
|
|
|
|
#include <Python.h>
|
|
#include <stdlib.h>
|
|
#include <inttypes.h>
|
|
|
|
/* Fuzz PyFloat_FromString as a proxy for float(str). */
|
|
static int fuzz_builtin_float(const char* data, size_t size) {
|
|
PyObject* s = PyBytes_FromStringAndSize(data, size);
|
|
if (s == NULL) return 0;
|
|
PyObject* f = PyFloat_FromString(s);
|
|
if (PyErr_Occurred() && PyErr_ExceptionMatches(PyExc_ValueError)) {
|
|
PyErr_Clear();
|
|
}
|
|
|
|
Py_XDECREF(f);
|
|
Py_DECREF(s);
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_INT_TEST_SIZE 0x10000
|
|
|
|
/* Fuzz PyLong_FromUnicodeObject as a proxy for int(str). */
|
|
static int fuzz_builtin_int(const char* data, size_t size) {
|
|
/* Ignore test cases with very long ints to avoid timeouts
|
|
int("9" * 1000000) is not a very interesting test caase */
|
|
if (size > MAX_INT_TEST_SIZE) {
|
|
return 0;
|
|
}
|
|
/* Pick a random valid base. (When the fuzzed function takes extra
|
|
parameters, it's somewhat normal to hash the input to generate those
|
|
parameters. We want to exercise all code paths, so we do so here.) */
|
|
int base = _Py_HashBytes(data, size) % 37;
|
|
if (base == 1) {
|
|
// 1 is the only number between 0 and 36 that is not a valid base.
|
|
base = 0;
|
|
}
|
|
if (base == -1) {
|
|
return 0; // An error occurred, bail early.
|
|
}
|
|
if (base < 0) {
|
|
base = -base;
|
|
}
|
|
|
|
PyObject* s = PyUnicode_FromStringAndSize(data, size);
|
|
if (s == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_UnicodeDecodeError)) {
|
|
PyErr_Clear();
|
|
}
|
|
return 0;
|
|
}
|
|
PyObject* l = PyLong_FromUnicodeObject(s, base);
|
|
if (l == NULL && PyErr_ExceptionMatches(PyExc_ValueError)) {
|
|
PyErr_Clear();
|
|
}
|
|
PyErr_Clear();
|
|
Py_XDECREF(l);
|
|
Py_DECREF(s);
|
|
return 0;
|
|
}
|
|
|
|
/* Fuzz PyUnicode_FromStringAndSize as a proxy for unicode(str). */
|
|
static int fuzz_builtin_unicode(const char* data, size_t size) {
|
|
PyObject* s = PyUnicode_FromStringAndSize(data, size);
|
|
if (s == NULL && PyErr_ExceptionMatches(PyExc_UnicodeDecodeError)) {
|
|
PyErr_Clear();
|
|
}
|
|
Py_XDECREF(s);
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_JSON_TEST_SIZE 0x10000
|
|
|
|
PyObject* json_loads_method = NULL;
|
|
/* Called by LLVMFuzzerTestOneInput for initialization */
|
|
static int init_json_loads() {
|
|
/* Import json.loads */
|
|
PyObject* json_module = PyImport_ImportModule("json");
|
|
if (json_module == NULL) {
|
|
return 0;
|
|
}
|
|
json_loads_method = PyObject_GetAttrString(json_module, "loads");
|
|
return json_loads_method != NULL;
|
|
}
|
|
/* Fuzz json.loads(x) */
|
|
static int fuzz_json_loads(const char* data, size_t size) {
|
|
/* Since python supports arbitrarily large ints in JSON,
|
|
long inputs can lead to timeouts on boring inputs like
|
|
`json.loads("9" * 100000)` */
|
|
if (size > MAX_JSON_TEST_SIZE) {
|
|
return 0;
|
|
}
|
|
PyObject* input_bytes = PyBytes_FromStringAndSize(data, size);
|
|
if (input_bytes == NULL) {
|
|
return 0;
|
|
}
|
|
PyObject* parsed = PyObject_CallFunctionObjArgs(json_loads_method, input_bytes, NULL);
|
|
if (parsed == NULL) {
|
|
/* Ignore ValueError as the fuzzer will more than likely
|
|
generate some invalid json and values */
|
|
if (PyErr_ExceptionMatches(PyExc_ValueError) ||
|
|
/* Ignore RecursionError as the fuzzer generates long sequences of
|
|
arrays such as `[[[...` */
|
|
PyErr_ExceptionMatches(PyExc_RecursionError) ||
|
|
/* Ignore unicode errors, invalid byte sequences are common */
|
|
PyErr_ExceptionMatches(PyExc_UnicodeDecodeError)
|
|
) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
Py_DECREF(input_bytes);
|
|
Py_XDECREF(parsed);
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_RE_TEST_SIZE 0x10000
|
|
|
|
PyObject* sre_compile_method = NULL;
|
|
PyObject* sre_error_exception = NULL;
|
|
int SRE_FLAG_DEBUG = 0;
|
|
/* Called by LLVMFuzzerTestOneInput for initialization */
|
|
static int init_sre_compile() {
|
|
/* Import sre_compile.compile and sre.error */
|
|
PyObject* sre_compile_module = PyImport_ImportModule("sre_compile");
|
|
if (sre_compile_module == NULL) {
|
|
return 0;
|
|
}
|
|
sre_compile_method = PyObject_GetAttrString(sre_compile_module, "compile");
|
|
if (sre_compile_method == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
PyObject* sre_constants = PyImport_ImportModule("sre_constants");
|
|
if (sre_constants == NULL) {
|
|
return 0;
|
|
}
|
|
sre_error_exception = PyObject_GetAttrString(sre_constants, "error");
|
|
if (sre_error_exception == NULL) {
|
|
return 0;
|
|
}
|
|
PyObject* debug_flag = PyObject_GetAttrString(sre_constants, "SRE_FLAG_DEBUG");
|
|
if (debug_flag == NULL) {
|
|
return 0;
|
|
}
|
|
SRE_FLAG_DEBUG = PyLong_AsLong(debug_flag);
|
|
return 1;
|
|
}
|
|
/* Fuzz _sre.compile(x) */
|
|
static int fuzz_sre_compile(const char* data, size_t size) {
|
|
/* Ignore really long regex patterns that will timeout the fuzzer */
|
|
if (size > MAX_RE_TEST_SIZE) {
|
|
return 0;
|
|
}
|
|
/* We treat the first 2 bytes of the input as a number for the flags */
|
|
if (size < 2) {
|
|
return 0;
|
|
}
|
|
uint16_t flags = ((uint16_t*) data)[0];
|
|
/* We remove the SRE_FLAG_DEBUG if present. This is because it
|
|
prints to stdout which greatly decreases fuzzing speed */
|
|
flags &= ~SRE_FLAG_DEBUG;
|
|
|
|
/* Pull the pattern from the remaining bytes */
|
|
PyObject* pattern_bytes = PyBytes_FromStringAndSize(data + 2, size - 2);
|
|
if (pattern_bytes == NULL) {
|
|
return 0;
|
|
}
|
|
PyObject* flags_obj = PyLong_FromUnsignedLong(flags);
|
|
if (flags_obj == NULL) {
|
|
Py_DECREF(pattern_bytes);
|
|
return 0;
|
|
}
|
|
|
|
/* compiled = _sre.compile(data[2:], data[0:2] */
|
|
PyObject* compiled = PyObject_CallFunctionObjArgs(
|
|
sre_compile_method, pattern_bytes, flags_obj, NULL);
|
|
/* Ignore ValueError as the fuzzer will more than likely
|
|
generate some invalid combination of flags */
|
|
if (compiled == NULL && PyErr_ExceptionMatches(PyExc_ValueError)) {
|
|
PyErr_Clear();
|
|
}
|
|
/* Ignore some common errors thrown by sre_parse:
|
|
Overflow, Assertion and Index */
|
|
if (compiled == NULL && (PyErr_ExceptionMatches(PyExc_OverflowError) ||
|
|
PyErr_ExceptionMatches(PyExc_AssertionError) ||
|
|
PyErr_ExceptionMatches(PyExc_IndexError))
|
|
) {
|
|
PyErr_Clear();
|
|
}
|
|
/* Ignore re.error */
|
|
if (compiled == NULL && PyErr_ExceptionMatches(sre_error_exception)) {
|
|
PyErr_Clear();
|
|
}
|
|
|
|
Py_DECREF(pattern_bytes);
|
|
Py_DECREF(flags_obj);
|
|
Py_XDECREF(compiled);
|
|
return 0;
|
|
}
|
|
|
|
/* Some random patterns used to test re.match.
|
|
Be careful not to add catostraphically slow regexes here, we want to
|
|
excercise the matching code without causing timeouts.*/
|
|
static const char* regex_patterns[] = {
|
|
".", "^", "abc", "abc|def", "^xxx$", "\\b", "()", "[a-zA-Z0-9]",
|
|
"abc+", "[^A-Z]", "[x]", "(?=)", "a{z}", "a+b", "a*?", "a??", "a+?",
|
|
"{}", "a{,}", "{", "}", "^\\(*\\d{3}\\)*( |-)*\\d{3}( |-)*\\d{4}$",
|
|
"(?:a*)*", "a{1,2}?"
|
|
};
|
|
const size_t NUM_PATTERNS = sizeof(regex_patterns) / sizeof(regex_patterns[0]);
|
|
PyObject** compiled_patterns = NULL;
|
|
/* Called by LLVMFuzzerTestOneInput for initialization */
|
|
static int init_sre_match() {
|
|
PyObject* re_module = PyImport_ImportModule("re");
|
|
if (re_module == NULL) {
|
|
return 0;
|
|
}
|
|
compiled_patterns = (PyObject**) PyMem_RawMalloc(
|
|
sizeof(PyObject*) * NUM_PATTERNS);
|
|
if (compiled_patterns == NULL) {
|
|
PyErr_NoMemory();
|
|
return 0;
|
|
}
|
|
|
|
/* Precompile all the regex patterns on the first run for faster fuzzing */
|
|
for (size_t i = 0; i < NUM_PATTERNS; i++) {
|
|
PyObject* compiled = PyObject_CallMethod(
|
|
re_module, "compile", "y", regex_patterns[i]);
|
|
/* Bail if any of the patterns fail to compile */
|
|
if (compiled == NULL) {
|
|
return 0;
|
|
}
|
|
compiled_patterns[i] = compiled;
|
|
}
|
|
return 1;
|
|
}
|
|
/* Fuzz re.match(x) */
|
|
static int fuzz_sre_match(const char* data, size_t size) {
|
|
if (size < 1 || size > MAX_RE_TEST_SIZE) {
|
|
return 0;
|
|
}
|
|
/* Use the first byte as a uint8_t specifying the index of the
|
|
regex to use */
|
|
unsigned char idx = (unsigned char) data[0];
|
|
idx = idx % NUM_PATTERNS;
|
|
|
|
/* Pull the string to match from the remaining bytes */
|
|
PyObject* to_match = PyBytes_FromStringAndSize(data + 1, size - 1);
|
|
if (to_match == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
PyObject* pattern = compiled_patterns[idx];
|
|
PyObject* match_callable = PyObject_GetAttrString(pattern, "match");
|
|
|
|
PyObject* matches = PyObject_CallFunctionObjArgs(match_callable, to_match, NULL);
|
|
|
|
Py_XDECREF(matches);
|
|
Py_DECREF(match_callable);
|
|
Py_DECREF(to_match);
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_CSV_TEST_SIZE 0x10000
|
|
PyObject* csv_module = NULL;
|
|
PyObject* csv_error = NULL;
|
|
/* Called by LLVMFuzzerTestOneInput for initialization */
|
|
static int init_csv_reader() {
|
|
/* Import csv and csv.Error */
|
|
csv_module = PyImport_ImportModule("csv");
|
|
if (csv_module == NULL) {
|
|
return 0;
|
|
}
|
|
csv_error = PyObject_GetAttrString(csv_module, "Error");
|
|
return csv_error != NULL;
|
|
}
|
|
/* Fuzz csv.reader([x]) */
|
|
static int fuzz_csv_reader(const char* data, size_t size) {
|
|
if (size < 1 || size > MAX_CSV_TEST_SIZE) {
|
|
return 0;
|
|
}
|
|
/* Ignore non null-terminated strings since _csv can't handle
|
|
embeded nulls */
|
|
if (memchr(data, '\0', size) == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
PyObject* s = PyUnicode_FromString(data);
|
|
/* Ignore exceptions until we have a valid string */
|
|
if (s == NULL) {
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
|
|
/* Split on \n so we can test multiple lines */
|
|
PyObject* lines = PyObject_CallMethod(s, "split", "s", "\n");
|
|
if (lines == NULL) {
|
|
Py_DECREF(s);
|
|
return 0;
|
|
}
|
|
|
|
PyObject* reader = PyObject_CallMethod(csv_module, "reader", "N", lines);
|
|
if (reader) {
|
|
/* Consume all of the reader as an iterator */
|
|
PyObject* parsed_line;
|
|
while ((parsed_line = PyIter_Next(reader))) {
|
|
Py_DECREF(parsed_line);
|
|
}
|
|
}
|
|
|
|
/* Ignore csv.Error because we're probably going to generate
|
|
some bad files (embeded new-lines, unterminated quotes etc) */
|
|
if (PyErr_ExceptionMatches(csv_error)) {
|
|
PyErr_Clear();
|
|
}
|
|
|
|
Py_XDECREF(reader);
|
|
Py_DECREF(s);
|
|
return 0;
|
|
}
|
|
|
|
/* Run fuzzer and abort on failure. */
|
|
static int _run_fuzz(const uint8_t *data, size_t size, int(*fuzzer)(const char* , size_t)) {
|
|
int rv = fuzzer((const char*) data, size);
|
|
if (PyErr_Occurred()) {
|
|
/* Fuzz tests should handle expected errors for themselves.
|
|
This is last-ditch check in case they didn't. */
|
|
PyErr_Print();
|
|
abort();
|
|
}
|
|
/* Someday the return value might mean something, propagate it. */
|
|
return rv;
|
|
}
|
|
|
|
/* CPython generates a lot of leak warnings for whatever reason. */
|
|
int __lsan_is_turned_off(void) { return 1; }
|
|
|
|
|
|
int LLVMFuzzerInitialize(int *argc, char ***argv) {
|
|
wchar_t* wide_program_name = Py_DecodeLocale(*argv[0], NULL);
|
|
Py_SetProgramName(wide_program_name);
|
|
return 0;
|
|
}
|
|
|
|
/* Fuzz test interface.
|
|
This returns the bitwise or of all fuzz test's return values.
|
|
|
|
All fuzz tests must return 0, as all nonzero return codes are reserved for
|
|
future use -- we propagate the return values for that future case.
|
|
(And we bitwise or when running multiple tests to verify that normally we
|
|
only return 0.) */
|
|
int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
|
|
if (!Py_IsInitialized()) {
|
|
/* LLVMFuzzerTestOneInput is called repeatedly from the same process,
|
|
with no separate initialization phase, sadly, so we need to
|
|
initialize CPython ourselves on the first run. */
|
|
Py_InitializeEx(0);
|
|
}
|
|
|
|
int rv = 0;
|
|
|
|
#if !defined(_Py_FUZZ_ONE) || defined(_Py_FUZZ_fuzz_builtin_float)
|
|
rv |= _run_fuzz(data, size, fuzz_builtin_float);
|
|
#endif
|
|
#if !defined(_Py_FUZZ_ONE) || defined(_Py_FUZZ_fuzz_builtin_int)
|
|
rv |= _run_fuzz(data, size, fuzz_builtin_int);
|
|
#endif
|
|
#if !defined(_Py_FUZZ_ONE) || defined(_Py_FUZZ_fuzz_builtin_unicode)
|
|
rv |= _run_fuzz(data, size, fuzz_builtin_unicode);
|
|
#endif
|
|
#if !defined(_Py_FUZZ_ONE) || defined(_Py_FUZZ_fuzz_json_loads)
|
|
static int JSON_LOADS_INITIALIZED = 0;
|
|
if (!JSON_LOADS_INITIALIZED && !init_json_loads()) {
|
|
PyErr_Print();
|
|
abort();
|
|
} else {
|
|
JSON_LOADS_INITIALIZED = 1;
|
|
}
|
|
|
|
rv |= _run_fuzz(data, size, fuzz_json_loads);
|
|
#endif
|
|
#if !defined(_Py_FUZZ_ONE) || defined(_Py_FUZZ_fuzz_sre_compile)
|
|
static int SRE_COMPILE_INITIALIZED = 0;
|
|
if (!SRE_COMPILE_INITIALIZED && !init_sre_compile()) {
|
|
PyErr_Print();
|
|
abort();
|
|
} else {
|
|
SRE_COMPILE_INITIALIZED = 1;
|
|
}
|
|
|
|
rv |= _run_fuzz(data, size, fuzz_sre_compile);
|
|
#endif
|
|
#if !defined(_Py_FUZZ_ONE) || defined(_Py_FUZZ_fuzz_sre_match)
|
|
static int SRE_MATCH_INITIALIZED = 0;
|
|
if (!SRE_MATCH_INITIALIZED && !init_sre_match()) {
|
|
PyErr_Print();
|
|
abort();
|
|
} else {
|
|
SRE_MATCH_INITIALIZED = 1;
|
|
}
|
|
|
|
rv |= _run_fuzz(data, size, fuzz_sre_match);
|
|
#endif
|
|
#if !defined(_Py_FUZZ_ONE) || defined(_Py_FUZZ_fuzz_csv_reader)
|
|
static int CSV_READER_INITIALIZED = 0;
|
|
if (!CSV_READER_INITIALIZED && !init_csv_reader()) {
|
|
PyErr_Print();
|
|
abort();
|
|
} else {
|
|
CSV_READER_INITIALIZED = 1;
|
|
}
|
|
|
|
rv |= _run_fuzz(data, size, fuzz_csv_reader);
|
|
#endif
|
|
return rv;
|
|
}
|