cpython/Python/specialize.c

640 lines
22 KiB
C

#include "Python.h"
#include "pycore_code.h"
#include "pycore_dict.h"
#include "pycore_long.h"
#include "pycore_moduleobject.h"
#include "opcode.h"
#include "structmember.h" // struct PyMemberDef, T_OFFSET_EX
/* For guidance on adding or extending families of instructions see
* ./adaptive.md
*/
/* We layout the quickened data as a bi-directional array:
* Instructions upwards, cache entries downwards.
* first_instr is aligned to a SpecializedCacheEntry.
* The nth instruction is located at first_instr[n]
* The nth cache is located at ((SpecializedCacheEntry *)first_instr)[-1-n]
* The first (index 0) cache entry is reserved for the count, to enable finding
* the first instruction from the base pointer.
* The cache_count argument must include space for the count.
* We use the SpecializedCacheOrInstruction union to refer to the data
* to avoid type punning.
Layout of quickened data, each line 8 bytes for M cache entries and N instructions:
<cache_count> <---- co->co_quickened
<cache M-1>
<cache M-2>
...
<cache 0>
<instr 0> <instr 1> <instr 2> <instr 3> <--- co->co_first_instr
<instr 4> <instr 5> <instr 6> <instr 7>
...
<instr N-1>
*/
Py_ssize_t _Py_QuickenedCount = 0;
#if SPECIALIZATION_STATS
SpecializationStats _specialization_stats[256] = { 0 };
#define PRINT_STAT(name, field) fprintf(stderr, " %s." #field " : %" PRIu64 "\n", name, stats->field);
static void
print_stats(SpecializationStats *stats, const char *name)
{
PRINT_STAT(name, specialization_success);
PRINT_STAT(name, specialization_failure);
PRINT_STAT(name, hit);
PRINT_STAT(name, deferred);
PRINT_STAT(name, miss);
PRINT_STAT(name, deopt);
PRINT_STAT(name, unquickened);
#if SPECIALIZATION_STATS_DETAILED
if (stats->miss_types == NULL) {
return;
}
fprintf(stderr, " %s.fails:\n", name);
PyObject *key, *count;
Py_ssize_t pos = 0;
while (PyDict_Next(stats->miss_types, &pos, &key, &count)) {
PyObject *type = PyTuple_GetItem(key, 0);
PyObject *name = PyTuple_GetItem(key, 1);
PyObject *kind = PyTuple_GetItem(key, 2);
fprintf(stderr, " %s.", ((PyTypeObject *)type)->tp_name);
PyObject_Print(name, stderr, Py_PRINT_RAW);
fprintf(stderr, " (");
PyObject_Print(kind, stderr, Py_PRINT_RAW);
fprintf(stderr, "): %ld\n", PyLong_AsLong(count));
}
#endif
}
void
_Py_PrintSpecializationStats(void)
{
printf("Specialization stats:\n");
print_stats(&_specialization_stats[LOAD_ATTR], "load_attr");
print_stats(&_specialization_stats[LOAD_GLOBAL], "load_global");
}
#if SPECIALIZATION_STATS_DETAILED
void
_Py_IncrementTypeCounter(int opcode, PyObject *type, PyObject *name, const char *kind)
{
PyObject *counter = _specialization_stats[opcode].miss_types;
if (counter == NULL) {
_specialization_stats[opcode].miss_types = PyDict_New();
counter = _specialization_stats[opcode].miss_types;
if (counter == NULL) {
return;
}
}
PyObject *key = NULL;
PyObject *kind_object = _PyUnicode_FromASCII(kind, strlen(kind));
if (kind_object == NULL) {
PyErr_Clear();
goto done;
}
key = PyTuple_Pack(3, type, name, kind_object);
if (key == NULL) {
PyErr_Clear();
goto done;
}
PyObject *count = PyDict_GetItem(counter, key);
if (count == NULL) {
count = _PyLong_GetZero();
if (PyDict_SetItem(counter, key, count) < 0) {
PyErr_Clear();
goto done;
}
}
count = PyNumber_Add(count, _PyLong_GetOne());
if (count == NULL) {
PyErr_Clear();
goto done;
}
if (PyDict_SetItem(counter, key, count)) {
PyErr_Clear();
}
done:
Py_XDECREF(kind_object);
Py_XDECREF(key);
}
#define SPECIALIZATION_FAIL(opcode, type, attribute, kind) _Py_IncrementTypeCounter(opcode, (PyObject *)(type), attribute, kind)
#endif
#endif
#ifndef SPECIALIZATION_FAIL
#define SPECIALIZATION_FAIL(opcode, type, attribute, kind) ((void)0)
#endif
static SpecializedCacheOrInstruction *
allocate(int cache_count, int instruction_count)
{
assert(sizeof(SpecializedCacheOrInstruction) == 2*sizeof(int32_t));
assert(sizeof(SpecializedCacheEntry) == 2*sizeof(int32_t));
assert(cache_count > 0);
assert(instruction_count > 0);
int count = cache_count + (instruction_count + INSTRUCTIONS_PER_ENTRY -1)/INSTRUCTIONS_PER_ENTRY;
SpecializedCacheOrInstruction *array = (SpecializedCacheOrInstruction *)
PyMem_Malloc(sizeof(SpecializedCacheOrInstruction) * count);
if (array == NULL) {
PyErr_NoMemory();
return NULL;
}
_Py_QuickenedCount++;
array[0].entry.zero.cache_count = cache_count;
return array;
}
static int
get_cache_count(SpecializedCacheOrInstruction *quickened) {
return quickened[0].entry.zero.cache_count;
}
/* Map from opcode to adaptive opcode.
Values of zero are ignored. */
static uint8_t adaptive_opcodes[256] = {
[LOAD_ATTR] = LOAD_ATTR_ADAPTIVE,
[LOAD_GLOBAL] = LOAD_GLOBAL_ADAPTIVE,
};
/* The number of cache entries required for a "family" of instructions. */
static uint8_t cache_requirements[256] = {
[LOAD_ATTR] = 2, /* _PyAdaptiveEntry and _PyLoadAttrCache */
[LOAD_GLOBAL] = 2, /* _PyAdaptiveEntry and _PyLoadGlobalCache */
};
/* Return the oparg for the cache_offset and instruction index.
*
* If no cache is needed then return the original oparg.
* If a cache is needed, but cannot be accessed because
* oparg would be too large, then return -1.
*
* Also updates the cache_offset, as it may need to be incremented by
* more than the cache requirements, if many instructions do not need caches.
*
* See pycore_code.h for details of how the cache offset,
* instruction index and oparg are related */
static int
oparg_from_instruction_and_update_offset(int index, int opcode, int original_oparg, int *cache_offset) {
/* The instruction pointer in the interpreter points to the next
* instruction, so we compute the offset using nexti (index + 1) */
int nexti = index + 1;
uint8_t need = cache_requirements[opcode];
if (need == 0) {
return original_oparg;
}
assert(adaptive_opcodes[opcode] != 0);
int oparg = oparg_from_offset_and_nexti(*cache_offset, nexti);
assert(*cache_offset == offset_from_oparg_and_nexti(oparg, nexti));
/* Some cache space is wasted here as the minimum possible offset is (nexti>>1) */
if (oparg < 0) {
oparg = 0;
*cache_offset = offset_from_oparg_and_nexti(oparg, nexti);
}
else if (oparg > 255) {
return -1;
}
*cache_offset += need;
return oparg;
}
static int
entries_needed(const _Py_CODEUNIT *code, int len)
{
int cache_offset = 0;
int previous_opcode = -1;
for (int i = 0; i < len; i++) {
uint8_t opcode = _Py_OPCODE(code[i]);
if (previous_opcode != EXTENDED_ARG) {
oparg_from_instruction_and_update_offset(i, opcode, 0, &cache_offset);
}
previous_opcode = opcode;
}
return cache_offset + 1; // One extra for the count entry
}
static inline _Py_CODEUNIT *
first_instruction(SpecializedCacheOrInstruction *quickened)
{
return &quickened[get_cache_count(quickened)].code[0];
}
/** Insert adaptive instructions and superinstructions.
*
* Skip instruction preceded by EXTENDED_ARG for adaptive
* instructions as those are both very rare and tricky
* to handle.
*/
static void
optimize(SpecializedCacheOrInstruction *quickened, int len)
{
_Py_CODEUNIT *instructions = first_instruction(quickened);
int cache_offset = 0;
int previous_opcode = -1;
for(int i = 0; i < len; i++) {
int opcode = _Py_OPCODE(instructions[i]);
int oparg = _Py_OPARG(instructions[i]);
uint8_t adaptive_opcode = adaptive_opcodes[opcode];
if (adaptive_opcode && previous_opcode != EXTENDED_ARG) {
int new_oparg = oparg_from_instruction_and_update_offset(
i, opcode, oparg, &cache_offset
);
if (new_oparg < 0) {
/* Not possible to allocate a cache for this instruction */
previous_opcode = opcode;
continue;
}
instructions[i] = _Py_MAKECODEUNIT(adaptive_opcode, new_oparg);
previous_opcode = adaptive_opcode;
int entries_needed = cache_requirements[opcode];
if (entries_needed) {
/* Initialize the adpative cache entry */
int cache0_offset = cache_offset-entries_needed;
SpecializedCacheEntry *cache =
_GetSpecializedCacheEntry(instructions, cache0_offset);
cache->adaptive.original_oparg = oparg;
cache->adaptive.counter = 0;
}
}
else {
/* Super instructions don't use the cache,
* so no need to update the offset. */
switch (opcode) {
case JUMP_ABSOLUTE:
instructions[i] = _Py_MAKECODEUNIT(JUMP_ABSOLUTE_QUICK, oparg);
break;
/* Insert superinstructions here
E.g.
case LOAD_FAST:
if (previous_opcode == LOAD_FAST)
instructions[i-1] = _Py_MAKECODEUNIT(LOAD_FAST__LOAD_FAST, oparg);
*/
}
previous_opcode = opcode;
}
}
assert(cache_offset+1 == get_cache_count(quickened));
}
int
_Py_Quicken(PyCodeObject *code) {
if (code->co_quickened) {
return 0;
}
Py_ssize_t size = PyBytes_GET_SIZE(code->co_code);
int instr_count = (int)(size/sizeof(_Py_CODEUNIT));
if (instr_count > MAX_SIZE_TO_QUICKEN) {
code->co_warmup = QUICKENING_WARMUP_COLDEST;
return 0;
}
int entry_count = entries_needed(code->co_firstinstr, instr_count);
SpecializedCacheOrInstruction *quickened = allocate(entry_count, instr_count);
if (quickened == NULL) {
return -1;
}
_Py_CODEUNIT *new_instructions = first_instruction(quickened);
memcpy(new_instructions, code->co_firstinstr, size);
optimize(quickened, instr_count);
code->co_quickened = quickened;
code->co_firstinstr = new_instructions;
return 0;
}
static int
specialize_module_load_attr(
PyObject *owner, _Py_CODEUNIT *instr, PyObject *name,
_PyAdaptiveEntry *cache0, _PyLoadAttrCache *cache1)
{
PyModuleObject *m = (PyModuleObject *)owner;
PyObject *value = NULL;
PyObject *getattr;
_Py_IDENTIFIER(__getattr__);
PyDictObject *dict = (PyDictObject *)m->md_dict;
if (dict == NULL) {
SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "no __dict__");
return -1;
}
if (dict->ma_keys->dk_kind != DICT_KEYS_UNICODE) {
SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "non-string keys (or split)");
return -1;
}
getattr = _PyUnicode_FromId(&PyId___getattr__); /* borrowed */
if (getattr == NULL) {
SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "module.__getattr__ overridden");
PyErr_Clear();
return -1;
}
Py_ssize_t index = _PyDict_GetItemHint(dict, getattr, -1, &value);
assert(index != DKIX_ERROR);
if (index != DKIX_EMPTY) {
SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "module attribute not found");
return -1;
}
index = _PyDict_GetItemHint(dict, name, -1, &value);
assert (index != DKIX_ERROR);
if (index != (uint16_t)index) {
SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "index out of range");
return -1;
}
uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict);
if (keys_version == 0) {
SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "no more key versions");
return -1;
}
cache1->dk_version_or_hint = keys_version;
cache0->index = (uint16_t)index;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_MODULE, _Py_OPARG(*instr));
return 0;
}
/* Attribute specialization */
typedef enum {
OVERRIDING, /* Is an overriding descriptor, and will remain so. */
METHOD, /* Attribute has Py_TPFLAGS_METHOD_DESCRIPTOR set */
PROPERTY, /* Is a property */
OBJECT_SLOT, /* Is an object slot descriptor */
OTHER_SLOT, /* Is a slot descriptor of another type */
NON_OVERRIDING, /* Is another non-overriding descriptor, and is an instance of an immutable class*/
NON_DESCRIPTOR, /* Is not a descriptor, and is an instance of an immutable class */
MUTABLE, /* Instance of a mutable class; might, or might not, be a descriptor */
ABSENT, /* Attribute is not present on the class */
DUNDER_CLASS, /* __class__ attribute */
GETATTRIBUTE_OVERRIDDEN /* __getattribute__ has been overridden */
} DesciptorClassification;
static DesciptorClassification
analyze_descriptor(PyTypeObject *type, PyObject *name, PyObject **descr)
{
if (type->tp_getattro != PyObject_GenericGetAttr) {
*descr = NULL;
return GETATTRIBUTE_OVERRIDDEN;
}
PyObject *descriptor = _PyType_Lookup(type, name);
*descr = descriptor;
if (descriptor == NULL) {
return ABSENT;
}
PyTypeObject *desc_cls = Py_TYPE(descriptor);
if (!(desc_cls->tp_flags & Py_TPFLAGS_IMMUTABLETYPE)) {
return MUTABLE;
}
if (desc_cls->tp_descr_set) {
if (desc_cls == &PyMemberDescr_Type) {
PyMemberDescrObject *member = (PyMemberDescrObject *)descriptor;
struct PyMemberDef *dmem = member->d_member;
if (dmem->type == T_OBJECT_EX) {
return OBJECT_SLOT;
}
return OTHER_SLOT;
}
if (desc_cls == &PyProperty_Type) {
return PROPERTY;
}
if (PyUnicode_CompareWithASCIIString(name, "__class__") == 0) {
if (descriptor == _PyType_Lookup(&PyBaseObject_Type, name)) {
return DUNDER_CLASS;
}
}
return OVERRIDING;
}
if (desc_cls->tp_descr_get) {
if (desc_cls->tp_flags & Py_TPFLAGS_METHOD_DESCRIPTOR) {
return METHOD;
}
return NON_OVERRIDING;
}
return NON_DESCRIPTOR;
}
int
_Py_Specialize_LoadAttr(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache)
{
_PyAdaptiveEntry *cache0 = &cache->adaptive;
_PyLoadAttrCache *cache1 = &cache[-1].load_attr;
if (PyModule_CheckExact(owner)) {
int err = specialize_module_load_attr(owner, instr, name, cache0, cache1);
if (err) {
goto fail;
}
goto success;
}
PyTypeObject *type = Py_TYPE(owner);
if (type->tp_dict == NULL) {
if (PyType_Ready(type) < 0) {
return -1;
}
}
PyObject *descr;
DesciptorClassification kind = analyze_descriptor(type, name, &descr);
switch(kind) {
case OVERRIDING:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "overriding descriptor");
goto fail;
case METHOD:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "method");
goto fail;
case PROPERTY:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "property");
goto fail;
case OBJECT_SLOT:
{
PyMemberDescrObject *member = (PyMemberDescrObject *)descr;
struct PyMemberDef *dmem = member->d_member;
Py_ssize_t offset = dmem->offset;
if (offset != (uint16_t)offset) {
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "offset out of range");
goto fail;
}
assert(dmem->type == T_OBJECT_EX);
assert(offset > 0);
cache0->index = (uint16_t)offset;
cache1->tp_version = type->tp_version_tag;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr));
goto success;
}
case DUNDER_CLASS:
{
Py_ssize_t offset = offsetof(PyObject, ob_type);
assert(offset == (uint16_t)offset);
cache0->index = (uint16_t)offset;
cache1->tp_version = type->tp_version_tag;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr));
goto success;
}
case OTHER_SLOT:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "non-object slot");
goto fail;
case MUTABLE:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "mutable class attribute");
goto fail;
case GETATTRIBUTE_OVERRIDDEN:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "__getattribute__ overridden");
goto fail;
case NON_OVERRIDING:
case NON_DESCRIPTOR:
case ABSENT:
break;
}
assert(kind == NON_OVERRIDING || kind == NON_DESCRIPTOR || kind == ABSENT);
// No desciptor, or non overriding.
if (type->tp_dictoffset < 0) {
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "negative offset");
goto fail;
}
if (type->tp_dictoffset > 0) {
PyObject **dictptr = (PyObject **) ((char *)owner + type->tp_dictoffset);
if (*dictptr == NULL || !PyDict_CheckExact(*dictptr)) {
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "no dict or not a dict");
goto fail;
}
// We found an instance with a __dict__.
PyDictObject *dict = (PyDictObject *)*dictptr;
if ((type->tp_flags & Py_TPFLAGS_HEAPTYPE)
&& dict->ma_keys == ((PyHeapTypeObject*)type)->ht_cached_keys
) {
// Keys are shared
assert(PyUnicode_CheckExact(name));
Py_hash_t hash = PyObject_Hash(name);
if (hash == -1) {
return -1;
}
PyObject *value;
Py_ssize_t index = _Py_dict_lookup(dict, name, hash, &value);
assert (index != DKIX_ERROR);
if (index != (uint16_t)index) {
SPECIALIZATION_FAIL(LOAD_ATTR, type, name,
index < 0 ? "attribute not in dict" : "index out of range");
goto fail;
}
uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict);
if (keys_version == 0) {
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "no more key versions");
goto fail;
}
cache1->dk_version_or_hint = keys_version;
cache1->tp_version = type->tp_version_tag;
cache0->index = (uint16_t)index;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_SPLIT_KEYS, _Py_OPARG(*instr));
goto success;
}
else {
PyObject *value = NULL;
Py_ssize_t hint =
_PyDict_GetItemHint(dict, name, -1, &value);
if (hint != (uint32_t)hint) {
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "hint out of range");
goto fail;
}
cache1->dk_version_or_hint = (uint32_t)hint;
cache1->tp_version = type->tp_version_tag;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_WITH_HINT, _Py_OPARG(*instr));
goto success;
}
}
assert(type->tp_dictoffset == 0);
/* No attribute in instance dictionary */
switch(kind) {
case NON_OVERRIDING:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "non-overriding descriptor");
goto fail;
case NON_DESCRIPTOR:
/* To do -- Optimize this case */
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "non descriptor");
goto fail;
case ABSENT:
SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "no attribute");
goto fail;
default:
Py_UNREACHABLE();
}
fail:
STAT_INC(LOAD_ATTR, specialization_failure);
assert(!PyErr_Occurred());
cache_backoff(cache0);
return 0;
success:
STAT_INC(LOAD_ATTR, specialization_success);
assert(!PyErr_Occurred());
cache0->counter = saturating_start();
return 0;
}
int
_Py_Specialize_LoadGlobal(
PyObject *globals, PyObject *builtins,
_Py_CODEUNIT *instr, PyObject *name,
SpecializedCacheEntry *cache)
{
_PyAdaptiveEntry *cache0 = &cache->adaptive;
_PyLoadGlobalCache *cache1 = &cache[-1].load_global;
assert(PyUnicode_CheckExact(name));
if (!PyDict_CheckExact(globals)) {
goto fail;
}
if (((PyDictObject *)globals)->ma_keys->dk_kind != DICT_KEYS_UNICODE) {
goto fail;
}
PyObject *value = NULL;
Py_ssize_t index = _PyDict_GetItemHint((PyDictObject *)globals, name, -1, &value);
assert (index != DKIX_ERROR);
if (index != DKIX_EMPTY) {
if (index != (uint16_t)index) {
goto fail;
}
uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState((PyDictObject *)globals);
if (keys_version == 0) {
goto fail;
}
cache1->module_keys_version = keys_version;
cache0->index = (uint16_t)index;
*instr = _Py_MAKECODEUNIT(LOAD_GLOBAL_MODULE, _Py_OPARG(*instr));
goto success;
}
if (!PyDict_CheckExact(builtins)) {
goto fail;
}
if (((PyDictObject *)builtins)->ma_keys->dk_kind != DICT_KEYS_UNICODE) {
goto fail;
}
index = _PyDict_GetItemHint((PyDictObject *)builtins, name, -1, &value);
assert (index != DKIX_ERROR);
if (index != (uint16_t)index) {
goto fail;
}
uint32_t globals_version = _PyDictKeys_GetVersionForCurrentState((PyDictObject *)globals);
if (globals_version == 0) {
goto fail;
}
uint32_t builtins_version = _PyDictKeys_GetVersionForCurrentState((PyDictObject *)builtins);
if (builtins_version == 0) {
goto fail;
}
cache1->module_keys_version = globals_version;
cache1->builtin_keys_version = builtins_version;
cache0->index = (uint16_t)index;
*instr = _Py_MAKECODEUNIT(LOAD_GLOBAL_BUILTIN, _Py_OPARG(*instr));
goto success;
fail:
STAT_INC(LOAD_GLOBAL, specialization_failure);
assert(!PyErr_Occurred());
cache_backoff(cache0);
return 0;
success:
STAT_INC(LOAD_GLOBAL, specialization_success);
assert(!PyErr_Occurred());
cache0->counter = saturating_start();
return 0;
}