mirror of https://github.com/python/cpython.git
949 lines
27 KiB
Python
949 lines
27 KiB
Python
# $Id$
|
|
#
|
|
# Copyright
|
|
#
|
|
# Copyright 1996 Digital Creations, L.C., 910 Princess Anne
|
|
# Street, Suite 300, Fredericksburg, Virginia 22401 U.S.A. All
|
|
# rights reserved. Copyright in this software is owned by DCLC,
|
|
# unless otherwise indicated. Permission to use, copy and
|
|
# distribute this software is hereby granted, provided that the
|
|
# above copyright notice appear in all copies and that both that
|
|
# copyright notice and this permission notice appear. Note that
|
|
# any product, process or technology described in this software
|
|
# may be the subject of other Intellectual Property rights
|
|
# reserved by Digital Creations, L.C. and are not licensed
|
|
# hereunder.
|
|
#
|
|
# Trademarks
|
|
#
|
|
# Digital Creations & DCLC, are trademarks of Digital Creations, L.C..
|
|
# All other trademarks are owned by their respective companies.
|
|
#
|
|
# No Warranty
|
|
#
|
|
# The software is provided "as is" without warranty of any kind,
|
|
# either express or implied, including, but not limited to, the
|
|
# implied warranties of merchantability, fitness for a particular
|
|
# purpose, or non-infringement. This software could include
|
|
# technical inaccuracies or typographical errors. Changes are
|
|
# periodically made to the software; these changes will be
|
|
# incorporated in new editions of the software. DCLC may make
|
|
# improvements and/or changes in this software at any time
|
|
# without notice.
|
|
#
|
|
# Limitation Of Liability
|
|
#
|
|
# In no event will DCLC be liable for direct, indirect, special,
|
|
# incidental, economic, cover, or consequential damages arising
|
|
# out of the use of or inability to use this software even if
|
|
# advised of the possibility of such damages. Some states do not
|
|
# allow the exclusion or limitation of implied warranties or
|
|
# limitation of liability for incidental or consequential
|
|
# damages, so the above limitation or exclusion may not apply to
|
|
# you.
|
|
#
|
|
#
|
|
# If you have questions regarding this software,
|
|
# contact:
|
|
#
|
|
# Jim Fulton, jim@digicool.com
|
|
#
|
|
# (540) 371-6909
|
|
#
|
|
|
|
"""\
|
|
Pickling Algorithm
|
|
------------------
|
|
|
|
This module implements a basic but powerful algorithm for "pickling" (a.k.a.
|
|
serializing, marshalling or flattening) nearly arbitrary Python objects.
|
|
This is a more primitive notion than persistency -- although pickle
|
|
reads and writes file objects, it does not handle the issue of naming
|
|
persistent objects, nor the (even more complicated) area of concurrent
|
|
access to persistent objects. The pickle module can transform a complex
|
|
object into a byte stream and it can transform the byte stream into
|
|
an object with the same internal structure. The most obvious thing to
|
|
do with these byte streams is to write them onto a file, but it is also
|
|
conceivable to send them across a network or store them in a database.
|
|
|
|
Unlike the built-in marshal module, pickle handles the following correctly:
|
|
|
|
- recursive objects
|
|
- pointer sharing
|
|
- classes and class instances
|
|
|
|
Pickle is Python-specific. This has the advantage that there are no
|
|
restrictions imposed by external standards such as CORBA (which probably
|
|
can't represent pointer sharing or recursive objects); however it means
|
|
that non-Python programs may not be able to reconstruct pickled Python
|
|
objects.
|
|
|
|
Pickle uses a printable ASCII representation. This is slightly more
|
|
voluminous than a binary representation. However, small integers actually
|
|
take *less* space when represented as minimal-size decimal strings than
|
|
when represented as 32-bit binary numbers, and strings are only much longer
|
|
if they contain control characters or 8-bit characters. The big advantage
|
|
of using printable ASCII (and of some other characteristics of pickle's
|
|
representation) is that for debugging or recovery purposes it is possible
|
|
for a human to read the pickled file with a standard text editor. (I could
|
|
have gone a step further and used a notation like S-expressions, but the
|
|
parser would have been considerably more complicated and slower, and the
|
|
files would probably have become much larger.)
|
|
|
|
Pickle doesn't handle code objects, which marshal does.
|
|
I suppose pickle could, and maybe it should, but there's probably no
|
|
great need for it right now (as long as marshal continues to be used
|
|
for reading and writing code objects), and at least this avoids
|
|
the possibility of smuggling Trojan horses into a program.
|
|
|
|
For the benefit of persistency modules written using pickle, it supports
|
|
the notion of a reference to an object outside the pickled data stream.
|
|
Such objects are referenced by a name, which is an arbitrary string of
|
|
printable ASCII characters. The resolution of such names is not defined
|
|
by the pickle module -- the persistent object module will have to implement
|
|
a method "persistent_load". To write references to persistent objects,
|
|
the persistent module must define a method "persistent_id" which returns
|
|
either None or the persistent ID of the object.
|
|
|
|
There are some restrictions on the pickling of class instances.
|
|
|
|
First of all, the class must be defined at the top level in a module.
|
|
|
|
Next, it must normally be possible to create class instances by
|
|
calling the class without arguments. Usually, this is best
|
|
accomplished by providing default values for all arguments to its
|
|
__init__ method (if it has one). If this is undesirable, the
|
|
class can define a method __getinitargs__, which should return a
|
|
*tuple* containing the arguments to be passed to the class
|
|
constructor.
|
|
|
|
Classes can influence how their instances are pickled -- if the class defines
|
|
the method __getstate__, it is called and the return state is pickled
|
|
as the contents for the instance, and if the class defines the
|
|
method __setstate__, it is called with the unpickled state. (Note
|
|
that these methods can also be used to implement copying class instances.)
|
|
If there is no __getstate__ method, the instance's __dict__
|
|
is pickled. If there is no __setstate__ method, the pickled object
|
|
must be a dictionary and its items are assigned to the new instance's
|
|
dictionary. (If a class defines both __getstate__ and __setstate__,
|
|
the state object needn't be a dictionary -- these methods can do what they
|
|
want.)
|
|
|
|
Note that when class instances are pickled, their class's code and data
|
|
is not pickled along with them. Only the instance data is pickled.
|
|
This is done on purpose, so you can fix bugs in a class or add methods and
|
|
still load objects that were created with an earlier version of the
|
|
class. If you plan to have long-lived objects that will see many versions
|
|
of a class, it may be worth to put a version number in the objects so
|
|
that suitable conversions can be made by the class's __setstate__ method.
|
|
|
|
The interface is as follows:
|
|
|
|
To pickle an object x onto a file f, open for writing:
|
|
|
|
p = pickle.Pickler(f)
|
|
p.dump(x)
|
|
|
|
To unpickle an object x from a file f, open for reading:
|
|
|
|
u = pickle.Unpickler(f)
|
|
x = u.load()
|
|
|
|
The Pickler class only calls the method f.write with a string argument
|
|
(XXX possibly the interface should pass f.write instead of f).
|
|
The Unpickler calls the methods f.read(with an integer argument)
|
|
and f.readline(without argument), both returning a string.
|
|
It is explicitly allowed to pass non-file objects here, as long as they
|
|
have the right methods.
|
|
|
|
The following types can be pickled:
|
|
|
|
- None
|
|
- integers, long integers, floating point numbers
|
|
- strings
|
|
- tuples, lists and dictionaries containing only picklable objects
|
|
- class instances whose __dict__ or __setstate__() is picklable
|
|
- classes
|
|
|
|
Attempts to pickle unpicklable objects will raise an exception
|
|
after having written an unspecified number of bytes to the file argument.
|
|
|
|
It is possible to make multiple calls to Pickler.dump() or to
|
|
Unpickler.load(), as long as there is a one-to-one correspondence
|
|
between pickler and Unpickler objects and between dump and load calls
|
|
for any pair of corresponding Pickler and Unpicklers. WARNING: this
|
|
is intended for pickleing multiple objects without intervening modifications
|
|
to the objects or their parts. If you modify an object and then pickle
|
|
it again using the same Pickler instance, the object is not pickled
|
|
again -- a reference to it is pickled and the Unpickler will return
|
|
the old value, not the modified one. (XXX There are two problems here:
|
|
(a) detecting changes, and (b) marshalling a minimal set of changes.
|
|
I have no answers. Garbage Collection may also become a problem here.)
|
|
"""
|
|
|
|
__version__ = "1.7" # Code version
|
|
|
|
from types import *
|
|
from copy_reg import *
|
|
import string, marshal
|
|
|
|
format_version = "1.2" # File format version we write
|
|
compatible_formats = ["1.0", "1.1"] # Old format versions we can read
|
|
|
|
mdumps = marshal.dumps
|
|
mloads = marshal.loads
|
|
|
|
PicklingError = "pickle.PicklingError"
|
|
UnpicklingError = "pickle.UnpicklingError"
|
|
|
|
MARK = '('
|
|
STOP = '.'
|
|
POP = '0'
|
|
POP_MARK = '1'
|
|
DUP = '2'
|
|
FLOAT = 'F'
|
|
INT = 'I'
|
|
BININT = 'J'
|
|
BININT1 = 'K'
|
|
LONG = 'L'
|
|
BININT2 = 'M'
|
|
NONE = 'N'
|
|
PERSID = 'P'
|
|
BINPERSID = 'Q'
|
|
REDUCE = 'R'
|
|
STRING = 'S'
|
|
BINSTRING = 'T'
|
|
SHORT_BINSTRING = 'U'
|
|
APPEND = 'a'
|
|
BUILD = 'b'
|
|
GLOBAL = 'c'
|
|
DICT = 'd'
|
|
EMPTY_DICT = '}'
|
|
APPENDS = 'e'
|
|
GET = 'g'
|
|
BINGET = 'h'
|
|
INST = 'i'
|
|
LONG_BINGET = 'j'
|
|
LIST = 'l'
|
|
EMPTY_LIST = ']'
|
|
OBJ = 'o'
|
|
PUT = 'p'
|
|
BINPUT = 'q'
|
|
LONG_BINPUT = 'r'
|
|
SETITEM = 's'
|
|
TUPLE = 't'
|
|
EMPTY_TUPLE = ')'
|
|
SETITEMS = 'u'
|
|
|
|
class Pickler:
|
|
|
|
def __init__(self, file, bin = 0):
|
|
self.write = file.write
|
|
self.memo = {}
|
|
self.bin = bin
|
|
|
|
def dump(self, object):
|
|
self.save(object)
|
|
self.write(STOP)
|
|
|
|
def dump_special(self, callable, args, state = None):
|
|
if (type(args) is not TupleType):
|
|
raise PicklingError, "Second argument to dump_special " \
|
|
"must be a tuple"
|
|
|
|
self.save_reduce(callable, args, state)
|
|
self.write(STOP)
|
|
|
|
def put(self, i):
|
|
if (self.bin):
|
|
s = mdumps(i)[1:]
|
|
if (i < 256):
|
|
return BINPUT + s[0]
|
|
|
|
return LONG_BINPUT + s
|
|
|
|
return PUT + `i` + '\n'
|
|
|
|
def get(self, i):
|
|
if (self.bin):
|
|
s = mdumps(i)[1:]
|
|
|
|
if (i < 256):
|
|
return BINGET + s[0]
|
|
|
|
return LONG_BINGET + s
|
|
|
|
return GET + `i` + '\n'
|
|
|
|
def save(self, object, pers_save = 0):
|
|
memo = self.memo
|
|
|
|
if (not pers_save):
|
|
pid = self.persistent_id(object)
|
|
if (pid is not None):
|
|
self.save_pers(pid)
|
|
return
|
|
|
|
d = id(object)
|
|
|
|
t = type(object)
|
|
|
|
if ((t is TupleType) and (len(object) == 0)):
|
|
if (self.bin):
|
|
self.save_empty_tuple(object)
|
|
else:
|
|
self.save_tuple(object)
|
|
return
|
|
|
|
if memo.has_key(d):
|
|
self.write(self.get(memo[d][0]))
|
|
return
|
|
|
|
try:
|
|
f = self.dispatch[t]
|
|
except KeyError:
|
|
pid = self.inst_persistent_id(object)
|
|
if pid is not None:
|
|
self.save_pers(pid)
|
|
return
|
|
|
|
try:
|
|
reduce = dispatch_table[t]
|
|
except KeyError:
|
|
try:
|
|
reduce = object.__reduce__
|
|
except AttributeError:
|
|
raise PicklingError, \
|
|
"can't pickle %s objects" % `t.__name__`
|
|
else:
|
|
tup = reduce()
|
|
else:
|
|
tup = reduce(object)
|
|
|
|
if (type(tup) is not TupleType):
|
|
raise PicklingError, "Value returned by %s must be a " \
|
|
"tuple" % reduce
|
|
|
|
l = len(tup)
|
|
|
|
if ((l != 2) and (l != 3)):
|
|
raise PicklingError, "tuple returned by %s must contain " \
|
|
"only two or three elements" % reduce
|
|
|
|
callable = tup[0]
|
|
arg_tup = tup[1]
|
|
|
|
if (l > 2):
|
|
state = tup[2]
|
|
else:
|
|
state = None
|
|
|
|
if (type(arg_tup) is not TupleType):
|
|
raise PicklingError, "Second element of tuple returned " \
|
|
"by %s must be a tuple" % reduce
|
|
|
|
self.save_reduce(callable, arg_tup, state)
|
|
return
|
|
|
|
f(self, object)
|
|
|
|
def persistent_id(self, object):
|
|
return None
|
|
|
|
def inst_persistent_id(self, object):
|
|
return None
|
|
|
|
def save_pers(self, pid):
|
|
if (not self.bin):
|
|
self.write(PERSID + str(pid) + '\n')
|
|
else:
|
|
self.save(pid, 1)
|
|
self.write(BINPERSID)
|
|
|
|
def save_reduce(self, callable, arg_tup, state = None):
|
|
write = self.write
|
|
save = self.save
|
|
|
|
save(callable)
|
|
save(arg_tup)
|
|
write(REDUCE)
|
|
|
|
if (state is not None):
|
|
save(state)
|
|
write(BUILD)
|
|
|
|
dispatch = {}
|
|
|
|
def save_none(self, object):
|
|
self.write(NONE)
|
|
dispatch[NoneType] = save_none
|
|
|
|
def save_int(self, object):
|
|
if (self.bin):
|
|
i = mdumps(object)[1:]
|
|
if (i[-2:] == '\000\000'):
|
|
if (i[-3] == '\000'):
|
|
self.write(BININT1 + i[:-3])
|
|
return
|
|
|
|
self.write(BININT2 + i[:-2])
|
|
return
|
|
|
|
self.write(BININT + i)
|
|
else:
|
|
self.write(INT + `object` + '\n')
|
|
dispatch[IntType] = save_int
|
|
|
|
def save_long(self, object):
|
|
self.write(LONG + `object` + '\n')
|
|
dispatch[LongType] = save_long
|
|
|
|
def save_float(self, object):
|
|
self.write(FLOAT + `object` + '\n')
|
|
dispatch[FloatType] = save_float
|
|
|
|
def save_string(self, object):
|
|
d = id(object)
|
|
memo = self.memo
|
|
|
|
if (self.bin):
|
|
l = len(object)
|
|
s = mdumps(l)[1:]
|
|
if (l < 256):
|
|
self.write(SHORT_BINSTRING + s[0] + object)
|
|
else:
|
|
self.write(BINSTRING + s + object)
|
|
else:
|
|
self.write(STRING + `object` + '\n')
|
|
|
|
memo_len = len(memo)
|
|
self.write(self.put(memo_len))
|
|
memo[d] = (memo_len, object)
|
|
dispatch[StringType] = save_string
|
|
|
|
def save_tuple(self, object):
|
|
|
|
write = self.write
|
|
save = self.save
|
|
memo = self.memo
|
|
|
|
d = id(object)
|
|
|
|
write(MARK)
|
|
|
|
for element in object:
|
|
save(element)
|
|
|
|
if (len(object) and memo.has_key(d)):
|
|
if (self.bin):
|
|
write(POP_MARK + self.get(memo[d][0]))
|
|
return
|
|
|
|
write(POP * (len(object) + 1) + self.get(mem[d][0]))
|
|
return
|
|
|
|
memo_len = len(memo)
|
|
self.write(TUPLE + self.put(memo_len))
|
|
memo[d] = (memo_len, object)
|
|
dispatch[TupleType] = save_tuple
|
|
|
|
def save_empty_tuple(self, object):
|
|
self.write(EMPTY_TUPLE)
|
|
|
|
def save_list(self, object):
|
|
d = id(object)
|
|
|
|
write = self.write
|
|
save = self.save
|
|
memo = self.memo
|
|
|
|
if (self.bin):
|
|
write(EMPTY_LIST)
|
|
else:
|
|
write(MARK + LIST)
|
|
|
|
memo_len = len(memo)
|
|
write(self.put(memo_len))
|
|
memo[d] = (memo_len, object)
|
|
|
|
using_appends = (self.bin and (len(object) > 1))
|
|
|
|
if (using_appends):
|
|
write(MARK)
|
|
|
|
for element in object:
|
|
save(element)
|
|
|
|
if (not using_appends):
|
|
write(APPEND)
|
|
|
|
if (using_appends):
|
|
write(APPENDS)
|
|
dispatch[ListType] = save_list
|
|
|
|
def save_dict(self, object):
|
|
d = id(object)
|
|
|
|
write = self.write
|
|
save = self.save
|
|
memo = self.memo
|
|
|
|
if (self.bin):
|
|
write(EMPTY_DICT)
|
|
else:
|
|
write(MARK + DICT)
|
|
|
|
memo_len = len(memo)
|
|
self.write(self.put(memo_len))
|
|
memo[d] = (memo_len, object)
|
|
|
|
using_setitems = (self.bin and (len(object) > 1))
|
|
|
|
if (using_setitems):
|
|
write(MARK)
|
|
|
|
items = object.items()
|
|
for key, value in items:
|
|
save(key)
|
|
save(value)
|
|
|
|
if (not using_setitems):
|
|
write(SETITEM)
|
|
|
|
if (using_setitems):
|
|
write(SETITEMS)
|
|
|
|
dispatch[DictionaryType] = save_dict
|
|
|
|
def save_inst(self, object):
|
|
d = id(object)
|
|
cls = object.__class__
|
|
|
|
memo = self.memo
|
|
write = self.write
|
|
save = self.save
|
|
|
|
if hasattr(object, '__getinitargs__'):
|
|
args = object.__getinitargs__()
|
|
len(args) # XXX Assert it's a sequence
|
|
else:
|
|
args = ()
|
|
|
|
write(MARK)
|
|
|
|
if (self.bin):
|
|
save(cls)
|
|
|
|
for arg in args:
|
|
save(arg)
|
|
|
|
memo_len = len(memo)
|
|
if (self.bin):
|
|
write(OBJ + self.put(memo_len))
|
|
else:
|
|
module = whichmodule(cls, cls.__name__)
|
|
name = cls.__name__
|
|
write(INST + module + '\n' + name + '\n' +
|
|
self.put(memo_len))
|
|
|
|
memo[d] = (memo_len, object)
|
|
|
|
try:
|
|
getstate = object.__getstate__
|
|
except AttributeError:
|
|
stuff = object.__dict__
|
|
else:
|
|
stuff = getstate()
|
|
save(stuff)
|
|
write(BUILD)
|
|
dispatch[InstanceType] = save_inst
|
|
|
|
def save_global(self, object, name = None):
|
|
write = self.write
|
|
memo = self.memo
|
|
|
|
if (name is None):
|
|
name = object.__name__
|
|
|
|
module = whichmodule(object, name)
|
|
|
|
memo_len = len(memo)
|
|
write(GLOBAL + module + '\n' + name + '\n' +
|
|
self.put(memo_len))
|
|
memo[id(object)] = (memo_len, object)
|
|
dispatch[ClassType] = save_global
|
|
dispatch[FunctionType] = save_global
|
|
dispatch[BuiltinFunctionType] = save_global
|
|
|
|
|
|
classmap = {}
|
|
|
|
def whichmodule(cls, clsname):
|
|
"""Figure out the module in which a class occurs.
|
|
|
|
Search sys.modules for the module.
|
|
Cache in classmap.
|
|
Return a module name.
|
|
If the class cannot be found, return __main__.
|
|
"""
|
|
if classmap.has_key(cls):
|
|
return classmap[cls]
|
|
import sys
|
|
|
|
for name, module in sys.modules.items():
|
|
if hasattr(module, clsname) and \
|
|
getattr(module, clsname) is cls:
|
|
break
|
|
else:
|
|
name = '__main__'
|
|
classmap[cls] = name
|
|
return name
|
|
|
|
|
|
class Unpickler:
|
|
|
|
def __init__(self, file):
|
|
self.readline = file.readline
|
|
self.read = file.read
|
|
self.memo = {}
|
|
|
|
def load(self):
|
|
self.mark = ['spam'] # Any new unique object
|
|
self.stack = []
|
|
self.append = self.stack.append
|
|
read = self.read
|
|
dispatch = self.dispatch
|
|
try:
|
|
while 1:
|
|
key = read(1)
|
|
dispatch[key](self)
|
|
except STOP, value:
|
|
return value
|
|
|
|
def marker(self):
|
|
stack = self.stack
|
|
mark = self.mark
|
|
k = len(stack)-1
|
|
while stack[k] is not mark: k = k-1
|
|
return k
|
|
|
|
dispatch = {}
|
|
|
|
def load_eof(self):
|
|
raise EOFError
|
|
dispatch[''] = load_eof
|
|
|
|
def load_persid(self):
|
|
pid = self.readline()[:-1]
|
|
self.append(self.persistent_load(pid))
|
|
dispatch[PERSID] = load_persid
|
|
|
|
def load_binpersid(self):
|
|
stack = self.stack
|
|
|
|
pid = stack[-1]
|
|
del stack[-1]
|
|
|
|
self.append(self.persistent_load(pid))
|
|
dispatch[BINPERSID] = load_binpersid
|
|
|
|
def load_none(self):
|
|
self.append(None)
|
|
dispatch[NONE] = load_none
|
|
|
|
def load_int(self):
|
|
self.append(string.atoi(self.readline()[:-1], 0))
|
|
dispatch[INT] = load_int
|
|
|
|
def load_binint(self):
|
|
self.append(mloads('i' + self.read(4)))
|
|
dispatch[BININT] = load_binint
|
|
|
|
def load_binint1(self):
|
|
self.append(mloads('i' + self.read(1) + '\000\000\000'))
|
|
dispatch[BININT1] = load_binint1
|
|
|
|
def load_binint2(self):
|
|
self.append(mloads('i' + self.read(2) + '\000\000'))
|
|
dispatch[BININT2] = load_binint2
|
|
|
|
def load_long(self):
|
|
self.append(string.atol(self.readline()[:-1], 0))
|
|
dispatch[LONG] = load_long
|
|
|
|
def load_float(self):
|
|
self.append(string.atof(self.readline()[:-1]))
|
|
dispatch[FLOAT] = load_float
|
|
|
|
def load_string(self):
|
|
self.append(eval(self.readline()[:-1],
|
|
{'__builtins__': {}})) # Let's be careful
|
|
dispatch[STRING] = load_string
|
|
|
|
def load_binstring(self):
|
|
len = mloads('i' + self.read(4))
|
|
self.append(self.read(len))
|
|
dispatch[BINSTRING] = load_binstring
|
|
|
|
def load_short_binstring(self):
|
|
len = mloads('i' + self.read(1) + '\000\000\000')
|
|
self.append(self.read(len))
|
|
dispatch[SHORT_BINSTRING] = load_short_binstring
|
|
|
|
def load_tuple(self):
|
|
k = self.marker()
|
|
self.stack[k:] = [tuple(self.stack[k+1:])]
|
|
dispatch[TUPLE] = load_tuple
|
|
|
|
def load_empty_tuple(self):
|
|
self.stack.append(())
|
|
dispatch[EMPTY_TUPLE] = load_empty_tuple
|
|
|
|
def load_empty_list(self):
|
|
self.stack.append([])
|
|
dispatch[EMPTY_LIST] = load_empty_list
|
|
|
|
def load_empty_dictionary(self):
|
|
self.stack.append({})
|
|
dispatch[EMPTY_DICT] = load_empty_dictionary
|
|
|
|
def load_list(self):
|
|
k = self.marker()
|
|
self.stack[k:] = [self.stack[k+1:]]
|
|
dispatch[LIST] = load_list
|
|
|
|
def load_dict(self):
|
|
k = self.marker()
|
|
d = {}
|
|
items = self.stack[k+1:]
|
|
for i in range(0, len(items), 2):
|
|
key = items[i]
|
|
value = items[i+1]
|
|
d[key] = value
|
|
self.stack[k:] = [d]
|
|
dispatch[DICT] = load_dict
|
|
|
|
def load_inst(self):
|
|
k = self.marker()
|
|
args = tuple(self.stack[k+1:])
|
|
del self.stack[k:]
|
|
module = self.readline()[:-1]
|
|
name = self.readline()[:-1]
|
|
klass = self.find_class(module, name)
|
|
if (type(klass) is not ClassType):
|
|
raise SystemError, "Imported object %s from module %s is " \
|
|
"not a class" % (name, module)
|
|
|
|
value = apply(klass, args)
|
|
self.append(value)
|
|
dispatch[INST] = load_inst
|
|
|
|
def load_obj(self):
|
|
stack = self.stack
|
|
k = self.marker()
|
|
klass = stack[k + 1]
|
|
del stack[k + 1]
|
|
args = tuple(stack[k + 1:])
|
|
del stack[k:]
|
|
value = apply(klass, args)
|
|
self.append(value)
|
|
dispatch[OBJ] = load_obj
|
|
|
|
def load_global(self):
|
|
module = self.readline()[:-1]
|
|
name = self.readline()[:-1]
|
|
klass = self.find_class(module, name)
|
|
self.append(klass)
|
|
dispatch[GLOBAL] = load_global
|
|
|
|
def find_class(self, module, name):
|
|
env = {}
|
|
|
|
try:
|
|
exec 'from %s import %s' % (module, name) in env
|
|
except ImportError:
|
|
raise SystemError, \
|
|
"Failed to import class %s from module %s" % \
|
|
(name, module)
|
|
klass = env[name]
|
|
return klass
|
|
|
|
def load_reduce(self):
|
|
stack = self.stack
|
|
|
|
callable = stack[-2]
|
|
arg_tup = stack[-1]
|
|
del stack[-2:]
|
|
|
|
if (type(callable) is not ClassType):
|
|
if (not safe_constructors.has_key(callable)):
|
|
try:
|
|
safe = callable.__safe_for_unpickling__
|
|
except AttributeError:
|
|
safe = None
|
|
|
|
if (not safe):
|
|
raise UnpicklingError, "%s is not safe for " \
|
|
"unpickling" % callable
|
|
|
|
value = apply(callable, arg_tup)
|
|
self.append(value)
|
|
dispatch[REDUCE] = load_reduce
|
|
|
|
def load_pop(self):
|
|
del self.stack[-1]
|
|
dispatch[POP] = load_pop
|
|
|
|
def load_pop_mark(self):
|
|
k = self.marker()
|
|
del self.stack[k:]
|
|
dispatch[POP_MARK] = load_pop_mark
|
|
|
|
def load_dup(self):
|
|
self.append(stack[-1])
|
|
dispatch[DUP] = load_dup
|
|
|
|
def load_get(self):
|
|
self.append(self.memo[self.readline()[:-1]])
|
|
dispatch[GET] = load_get
|
|
|
|
def load_binget(self):
|
|
i = mloads('i' + self.read(1) + '\000\000\000')
|
|
self.append(self.memo[`i`])
|
|
dispatch[BINGET] = load_binget
|
|
|
|
def load_long_binget(self):
|
|
i = mloads('i' + self.read(4))
|
|
self.append(self.memo[`i`])
|
|
dispatch[LONG_BINGET] = load_long_binget
|
|
|
|
def load_put(self):
|
|
self.memo[self.readline()[:-1]] = self.stack[-1]
|
|
dispatch[PUT] = load_put
|
|
|
|
def load_binput(self):
|
|
i = mloads('i' + self.read(1) + '\000\000\000')
|
|
self.memo[`i`] = self.stack[-1]
|
|
dispatch[BINPUT] = load_binput
|
|
|
|
def load_long_binput(self):
|
|
i = mloads('i' + self.read(4))
|
|
self.memo[`i`] = self.stack[-1]
|
|
dispatch[LONG_BINPUT] = load_long_binput
|
|
|
|
def load_append(self):
|
|
stack = self.stack
|
|
value = stack[-1]
|
|
del stack[-1]
|
|
list = stack[-1]
|
|
list.append(value)
|
|
dispatch[APPEND] = load_append
|
|
|
|
def load_appends(self):
|
|
stack = self.stack
|
|
mark = self.marker()
|
|
list = stack[mark - 1]
|
|
for i in range(mark + 1, len(stack)):
|
|
list.append(stack[i])
|
|
|
|
del stack[mark:]
|
|
dispatch[APPENDS] = load_appends
|
|
|
|
def load_setitem(self):
|
|
stack = self.stack
|
|
value = stack[-1]
|
|
key = stack[-2]
|
|
del stack[-2:]
|
|
dict = stack[-1]
|
|
dict[key] = value
|
|
dispatch[SETITEM] = load_setitem
|
|
|
|
def load_setitems(self):
|
|
stack = self.stack
|
|
mark = self.marker()
|
|
dict = stack[mark - 1]
|
|
for i in range(mark + 1, len(stack), 2):
|
|
dict[stack[i]] = stack[i + 1]
|
|
|
|
del stack[mark:]
|
|
dispatch[SETITEMS] = load_setitems
|
|
|
|
def load_build(self):
|
|
stack = self.stack
|
|
value = stack[-1]
|
|
del stack[-1]
|
|
inst = stack[-1]
|
|
try:
|
|
setstate = inst.__setstate__
|
|
except AttributeError:
|
|
for key in value.keys():
|
|
setattr(inst, key, value[key])
|
|
else:
|
|
setstate(value)
|
|
dispatch[BUILD] = load_build
|
|
|
|
def load_mark(self):
|
|
self.append(self.mark)
|
|
dispatch[MARK] = load_mark
|
|
|
|
def load_stop(self):
|
|
value = self.stack[-1]
|
|
del self.stack[-1]
|
|
raise STOP, value
|
|
dispatch[STOP] = load_stop
|
|
|
|
|
|
# Shorthands
|
|
|
|
from StringIO import StringIO
|
|
|
|
def dump(object, file, bin = 0):
|
|
Pickler(file, bin).dump(object)
|
|
|
|
def dumps(object, bin = 0):
|
|
file = StringIO()
|
|
Pickler(file, bin).dump(object)
|
|
return file.getvalue()
|
|
|
|
def load(file):
|
|
return Unpickler(file).load()
|
|
|
|
def loads(str):
|
|
file = StringIO(str)
|
|
return Unpickler(file).load()
|
|
|
|
|
|
# The rest is used for testing only
|
|
|
|
class C:
|
|
def __cmp__(self, other):
|
|
return cmp(self.__dict__, other.__dict__)
|
|
|
|
def test():
|
|
fn = 'out'
|
|
c = C()
|
|
c.foo = 1
|
|
c.bar = 2
|
|
x = [0, 1, 2, 3]
|
|
y = ('abc', 'abc', c, c)
|
|
x.append(y)
|
|
x.append(y)
|
|
x.append(5)
|
|
f = open(fn, 'w')
|
|
F = Pickler(f)
|
|
F.dump(x)
|
|
f.close()
|
|
f = open(fn, 'r')
|
|
U = Unpickler(f)
|
|
x2 = U.load()
|
|
print x
|
|
print x2
|
|
print x == x2
|
|
print map(id, x)
|
|
print map(id, x2)
|
|
print F.memo
|
|
print U.memo
|
|
|
|
if __name__ == '__main__':
|
|
test()
|