cpython/Include/internal/pycore_object.h

847 lines
26 KiB
C

#ifndef Py_INTERNAL_OBJECT_H
#define Py_INTERNAL_OBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
#ifndef Py_BUILD_CORE
# error "this header requires Py_BUILD_CORE define"
#endif
#include <stdbool.h>
#include "pycore_gc.h" // _PyObject_GC_IS_TRACKED()
#include "pycore_emscripten_trampoline.h" // _PyCFunction_TrampolineCall()
#include "pycore_interp.h" // PyInterpreterState.gc
#include "pycore_pyatomic_ft_wrappers.h" // FT_ATOMIC_STORE_PTR_RELAXED
#include "pycore_pystate.h" // _PyInterpreterState_GET()
#define _Py_IMMORTAL_REFCNT_LOOSE ((_Py_IMMORTAL_REFCNT >> 1) + 1)
// gh-121528, gh-118997: Similar to _Py_IsImmortal() but be more loose when
// comparing the reference count to stay compatible with C extensions built
// with the stable ABI 3.11 or older. Such extensions implement INCREF/DECREF
// as refcnt++ and refcnt-- without taking in account immortal objects. For
// example, the reference count of an immortal object can change from
// _Py_IMMORTAL_REFCNT to _Py_IMMORTAL_REFCNT+1 (INCREF) or
// _Py_IMMORTAL_REFCNT-1 (DECREF).
//
// This function should only be used in assertions. Otherwise, _Py_IsImmortal()
// must be used instead.
static inline int _Py_IsImmortalLoose(PyObject *op)
{
#if defined(Py_GIL_DISABLED)
return _Py_IsImmortal(op);
#else
return (op->ob_refcnt >= _Py_IMMORTAL_REFCNT_LOOSE);
#endif
}
#define _Py_IsImmortalLoose(op) _Py_IsImmortalLoose(_PyObject_CAST(op))
/* Check if an object is consistent. For example, ensure that the reference
counter is greater than or equal to 1, and ensure that ob_type is not NULL.
Call _PyObject_AssertFailed() if the object is inconsistent.
If check_content is zero, only check header fields: reduce the overhead.
The function always return 1. The return value is just here to be able to
write:
assert(_PyObject_CheckConsistency(obj, 1)); */
extern int _PyObject_CheckConsistency(PyObject *op, int check_content);
extern void _PyDebugAllocatorStats(FILE *out, const char *block_name,
int num_blocks, size_t sizeof_block);
extern void _PyObject_DebugTypeStats(FILE *out);
#ifdef Py_TRACE_REFS
// Forget a reference registered by _Py_NewReference(). Function called by
// _Py_Dealloc().
//
// On a free list, the function can be used before modifying an object to
// remove the object from traced objects. Then _Py_NewReference() or
// _Py_NewReferenceNoTotal() should be called again on the object to trace
// it again.
extern void _Py_ForgetReference(PyObject *);
#endif
// Export for shared _testinternalcapi extension
PyAPI_FUNC(int) _PyObject_IsFreed(PyObject *);
/* We need to maintain an internal copy of Py{Var}Object_HEAD_INIT to avoid
designated initializer conflicts in C++20. If we use the deinition in
object.h, we will be mixing designated and non-designated initializers in
pycore objects which is forbiddent in C++20. However, if we then use
designated initializers in object.h then Extensions without designated break.
Furthermore, we can't use designated initializers in Extensions since these
are not supported pre-C++20. Thus, keeping an internal copy here is the most
backwards compatible solution */
#if defined(Py_GIL_DISABLED)
#define _PyObject_HEAD_INIT(type) \
{ \
.ob_ref_local = _Py_IMMORTAL_REFCNT_LOCAL, \
.ob_type = (type) \
}
#else
#define _PyObject_HEAD_INIT(type) \
{ \
.ob_refcnt = _Py_IMMORTAL_REFCNT, \
.ob_type = (type) \
}
#endif
#define _PyVarObject_HEAD_INIT(type, size) \
{ \
.ob_base = _PyObject_HEAD_INIT(type), \
.ob_size = size \
}
PyAPI_FUNC(void) _Py_NO_RETURN _Py_FatalRefcountErrorFunc(
const char *func,
const char *message);
#define _Py_FatalRefcountError(message) \
_Py_FatalRefcountErrorFunc(__func__, (message))
#define _PyReftracerTrack(obj, operation) \
do { \
struct _reftracer_runtime_state *tracer = &_PyRuntime.ref_tracer; \
if (tracer->tracer_func != NULL) { \
void *data = tracer->tracer_data; \
tracer->tracer_func((obj), (operation), data); \
} \
} while(0)
#ifdef Py_REF_DEBUG
/* The symbol is only exposed in the API for the sake of extensions
built against the pre-3.12 stable ABI. */
PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
extern void _Py_AddRefTotal(PyThreadState *, Py_ssize_t);
extern void _Py_IncRefTotal(PyThreadState *);
extern void _Py_DecRefTotal(PyThreadState *);
# define _Py_DEC_REFTOTAL(interp) \
interp->object_state.reftotal--
#endif
// Increment reference count by n
static inline void _Py_RefcntAdd(PyObject* op, Py_ssize_t n)
{
if (_Py_IsImmortal(op)) {
return;
}
#ifdef Py_REF_DEBUG
_Py_AddRefTotal(_PyThreadState_GET(), n);
#endif
#if !defined(Py_GIL_DISABLED)
op->ob_refcnt += n;
#else
if (_Py_IsOwnedByCurrentThread(op)) {
uint32_t local = op->ob_ref_local;
Py_ssize_t refcnt = (Py_ssize_t)local + n;
# if PY_SSIZE_T_MAX > UINT32_MAX
if (refcnt > (Py_ssize_t)UINT32_MAX) {
// Make the object immortal if the 32-bit local reference count
// would overflow.
refcnt = _Py_IMMORTAL_REFCNT_LOCAL;
}
# endif
_Py_atomic_store_uint32_relaxed(&op->ob_ref_local, (uint32_t)refcnt);
}
else {
_Py_atomic_add_ssize(&op->ob_ref_shared, (n << _Py_REF_SHARED_SHIFT));
}
#endif
}
#define _Py_RefcntAdd(op, n) _Py_RefcntAdd(_PyObject_CAST(op), n)
extern void _Py_SetImmortal(PyObject *op);
extern void _Py_SetImmortalUntracked(PyObject *op);
// Makes an immortal object mortal again with the specified refcnt. Should only
// be used during runtime finalization.
static inline void _Py_SetMortal(PyObject *op, Py_ssize_t refcnt)
{
if (op) {
assert(_Py_IsImmortalLoose(op));
#ifdef Py_GIL_DISABLED
op->ob_tid = _Py_UNOWNED_TID;
op->ob_ref_local = 0;
op->ob_ref_shared = _Py_REF_SHARED(refcnt, _Py_REF_MERGED);
#else
op->ob_refcnt = refcnt;
#endif
}
}
/* _Py_ClearImmortal() should only be used during runtime finalization. */
static inline void _Py_ClearImmortal(PyObject *op)
{
if (op) {
_Py_SetMortal(op, 1);
Py_DECREF(op);
}
}
#define _Py_ClearImmortal(op) \
do { \
_Py_ClearImmortal(_PyObject_CAST(op)); \
op = NULL; \
} while (0)
// Mark an object as supporting deferred reference counting. This is a no-op
// in the default (with GIL) build. Objects that use deferred reference
// counting should be tracked by the GC so that they are eventually collected.
extern void _PyObject_SetDeferredRefcount(PyObject *op);
static inline int
_PyObject_HasDeferredRefcount(PyObject *op)
{
#ifdef Py_GIL_DISABLED
return _PyObject_HAS_GC_BITS(op, _PyGC_BITS_DEFERRED);
#else
return 0;
#endif
}
#if !defined(Py_GIL_DISABLED)
static inline void
_Py_DECREF_SPECIALIZED(PyObject *op, const destructor destruct)
{
if (_Py_IsImmortal(op)) {
return;
}
_Py_DECREF_STAT_INC();
#ifdef Py_REF_DEBUG
_Py_DEC_REFTOTAL(PyInterpreterState_Get());
#endif
if (--op->ob_refcnt != 0) {
assert(op->ob_refcnt > 0);
}
else {
#ifdef Py_TRACE_REFS
_Py_ForgetReference(op);
#endif
_PyReftracerTrack(op, PyRefTracer_DESTROY);
destruct(op);
}
}
static inline void
_Py_DECREF_NO_DEALLOC(PyObject *op)
{
if (_Py_IsImmortal(op)) {
return;
}
_Py_DECREF_STAT_INC();
#ifdef Py_REF_DEBUG
_Py_DEC_REFTOTAL(PyInterpreterState_Get());
#endif
op->ob_refcnt--;
#ifdef Py_DEBUG
if (op->ob_refcnt <= 0) {
_Py_FatalRefcountError("Expected a positive remaining refcount");
}
#endif
}
#else
// TODO: implement Py_DECREF specializations for Py_GIL_DISABLED build
static inline void
_Py_DECREF_SPECIALIZED(PyObject *op, const destructor destruct)
{
Py_DECREF(op);
}
static inline void
_Py_DECREF_NO_DEALLOC(PyObject *op)
{
Py_DECREF(op);
}
static inline int
_Py_REF_IS_MERGED(Py_ssize_t ob_ref_shared)
{
return (ob_ref_shared & _Py_REF_SHARED_FLAG_MASK) == _Py_REF_MERGED;
}
static inline int
_Py_REF_IS_QUEUED(Py_ssize_t ob_ref_shared)
{
return (ob_ref_shared & _Py_REF_SHARED_FLAG_MASK) == _Py_REF_QUEUED;
}
// Merge the local and shared reference count fields and add `extra` to the
// refcount when merging.
Py_ssize_t _Py_ExplicitMergeRefcount(PyObject *op, Py_ssize_t extra);
#endif // !defined(Py_GIL_DISABLED)
#ifdef Py_REF_DEBUG
# undef _Py_DEC_REFTOTAL
#endif
extern int _PyType_CheckConsistency(PyTypeObject *type);
extern int _PyDict_CheckConsistency(PyObject *mp, int check_content);
/* Update the Python traceback of an object. This function must be called
when a memory block is reused from a free list.
Internal function called by _Py_NewReference(). */
extern int _PyTraceMalloc_TraceRef(PyObject *op, PyRefTracerEvent event, void*);
// Fast inlined version of PyType_HasFeature()
static inline int
_PyType_HasFeature(PyTypeObject *type, unsigned long feature) {
return ((FT_ATOMIC_LOAD_ULONG_RELAXED(type->tp_flags) & feature) != 0);
}
extern void _PyType_InitCache(PyInterpreterState *interp);
extern PyStatus _PyObject_InitState(PyInterpreterState *interp);
extern void _PyObject_FiniState(PyInterpreterState *interp);
extern bool _PyRefchain_IsTraced(PyInterpreterState *interp, PyObject *obj);
/* Inline functions trading binary compatibility for speed:
_PyObject_Init() is the fast version of PyObject_Init(), and
_PyObject_InitVar() is the fast version of PyObject_InitVar().
These inline functions must not be called with op=NULL. */
static inline void
_PyObject_Init(PyObject *op, PyTypeObject *typeobj)
{
assert(op != NULL);
Py_SET_TYPE(op, typeobj);
assert(_PyType_HasFeature(typeobj, Py_TPFLAGS_HEAPTYPE) || _Py_IsImmortalLoose(typeobj));
Py_INCREF(typeobj);
_Py_NewReference(op);
}
static inline void
_PyObject_InitVar(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size)
{
assert(op != NULL);
assert(typeobj != &PyLong_Type);
_PyObject_Init((PyObject *)op, typeobj);
Py_SET_SIZE(op, size);
}
/* Tell the GC to track this object.
*
* The object must not be tracked by the GC.
*
* NB: While the object is tracked by the collector, it must be safe to call the
* ob_traverse method.
*
* Internal note: interp->gc.generation0->_gc_prev doesn't have any bit flags
* because it's not object header. So we don't use _PyGCHead_PREV() and
* _PyGCHead_SET_PREV() for it to avoid unnecessary bitwise operations.
*
* See also the public PyObject_GC_Track() function.
*/
static inline void _PyObject_GC_TRACK(
// The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined
#ifndef NDEBUG
const char *filename, int lineno,
#endif
PyObject *op)
{
_PyObject_ASSERT_FROM(op, !_PyObject_GC_IS_TRACKED(op),
"object already tracked by the garbage collector",
filename, lineno, __func__);
#ifdef Py_GIL_DISABLED
_PyObject_SET_GC_BITS(op, _PyGC_BITS_TRACKED);
#else
PyGC_Head *gc = _Py_AS_GC(op);
_PyObject_ASSERT_FROM(op,
(gc->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0,
"object is in generation which is garbage collected",
filename, lineno, __func__);
PyInterpreterState *interp = _PyInterpreterState_GET();
PyGC_Head *generation0 = interp->gc.generation0;
PyGC_Head *last = (PyGC_Head*)(generation0->_gc_prev);
_PyGCHead_SET_NEXT(last, gc);
_PyGCHead_SET_PREV(gc, last);
_PyGCHead_SET_NEXT(gc, generation0);
generation0->_gc_prev = (uintptr_t)gc;
#endif
}
/* Tell the GC to stop tracking this object.
*
* Internal note: This may be called while GC. So _PyGC_PREV_MASK_COLLECTING
* must be cleared. But _PyGC_PREV_MASK_FINALIZED bit is kept.
*
* The object must be tracked by the GC.
*
* See also the public PyObject_GC_UnTrack() which accept an object which is
* not tracked.
*/
static inline void _PyObject_GC_UNTRACK(
// The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined
#ifndef NDEBUG
const char *filename, int lineno,
#endif
PyObject *op)
{
_PyObject_ASSERT_FROM(op, _PyObject_GC_IS_TRACKED(op),
"object not tracked by the garbage collector",
filename, lineno, __func__);
#ifdef Py_GIL_DISABLED
_PyObject_CLEAR_GC_BITS(op, _PyGC_BITS_TRACKED);
#else
PyGC_Head *gc = _Py_AS_GC(op);
PyGC_Head *prev = _PyGCHead_PREV(gc);
PyGC_Head *next = _PyGCHead_NEXT(gc);
_PyGCHead_SET_NEXT(prev, next);
_PyGCHead_SET_PREV(next, prev);
gc->_gc_next = 0;
gc->_gc_prev &= _PyGC_PREV_MASK_FINALIZED;
#endif
}
// Macros to accept any type for the parameter, and to automatically pass
// the filename and the filename (if NDEBUG is not defined) where the macro
// is called.
#ifdef NDEBUG
# define _PyObject_GC_TRACK(op) \
_PyObject_GC_TRACK(_PyObject_CAST(op))
# define _PyObject_GC_UNTRACK(op) \
_PyObject_GC_UNTRACK(_PyObject_CAST(op))
#else
# define _PyObject_GC_TRACK(op) \
_PyObject_GC_TRACK(__FILE__, __LINE__, _PyObject_CAST(op))
# define _PyObject_GC_UNTRACK(op) \
_PyObject_GC_UNTRACK(__FILE__, __LINE__, _PyObject_CAST(op))
#endif
#ifdef Py_GIL_DISABLED
/* Tries to increment an object's reference count
*
* This is a specialized version of _Py_TryIncref that only succeeds if the
* object is immortal or local to this thread. It does not handle the case
* where the reference count modification requires an atomic operation. This
* allows call sites to specialize for the immortal/local case.
*/
static inline int
_Py_TryIncrefFast(PyObject *op) {
uint32_t local = _Py_atomic_load_uint32_relaxed(&op->ob_ref_local);
local += 1;
if (local == 0) {
// immortal
return 1;
}
if (_Py_IsOwnedByCurrentThread(op)) {
_Py_INCREF_STAT_INC();
_Py_atomic_store_uint32_relaxed(&op->ob_ref_local, local);
#ifdef Py_REF_DEBUG
_Py_IncRefTotal(_PyThreadState_GET());
#endif
return 1;
}
return 0;
}
static inline int
_Py_TryIncRefShared(PyObject *op)
{
Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared);
for (;;) {
// If the shared refcount is zero and the object is either merged
// or may not have weak references, then we cannot incref it.
if (shared == 0 || shared == _Py_REF_MERGED) {
return 0;
}
if (_Py_atomic_compare_exchange_ssize(
&op->ob_ref_shared,
&shared,
shared + (1 << _Py_REF_SHARED_SHIFT))) {
#ifdef Py_REF_DEBUG
_Py_IncRefTotal(_PyThreadState_GET());
#endif
_Py_INCREF_STAT_INC();
return 1;
}
}
}
/* Tries to incref the object op and ensures that *src still points to it. */
static inline int
_Py_TryIncrefCompare(PyObject **src, PyObject *op)
{
if (_Py_TryIncrefFast(op)) {
return 1;
}
if (!_Py_TryIncRefShared(op)) {
return 0;
}
if (op != _Py_atomic_load_ptr(src)) {
Py_DECREF(op);
return 0;
}
return 1;
}
/* Loads and increfs an object from ptr, which may contain a NULL value.
Safe with concurrent (atomic) updates to ptr.
NOTE: The writer must set maybe-weakref on the stored object! */
static inline PyObject *
_Py_XGetRef(PyObject **ptr)
{
for (;;) {
PyObject *value = _Py_atomic_load_ptr(ptr);
if (value == NULL) {
return value;
}
if (_Py_TryIncrefCompare(ptr, value)) {
return value;
}
}
}
/* Attempts to loads and increfs an object from ptr. Returns NULL
on failure, which may be due to a NULL value or a concurrent update. */
static inline PyObject *
_Py_TryXGetRef(PyObject **ptr)
{
PyObject *value = _Py_atomic_load_ptr(ptr);
if (value == NULL) {
return value;
}
if (_Py_TryIncrefCompare(ptr, value)) {
return value;
}
return NULL;
}
/* Like Py_NewRef but also optimistically sets _Py_REF_MAYBE_WEAKREF
on objects owned by a different thread. */
static inline PyObject *
_Py_NewRefWithLock(PyObject *op)
{
if (_Py_TryIncrefFast(op)) {
return op;
}
#ifdef Py_REF_DEBUG
_Py_IncRefTotal(_PyThreadState_GET());
#endif
_Py_INCREF_STAT_INC();
for (;;) {
Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared);
Py_ssize_t new_shared = shared + (1 << _Py_REF_SHARED_SHIFT);
if ((shared & _Py_REF_SHARED_FLAG_MASK) == 0) {
new_shared |= _Py_REF_MAYBE_WEAKREF;
}
if (_Py_atomic_compare_exchange_ssize(
&op->ob_ref_shared,
&shared,
new_shared)) {
return op;
}
}
}
static inline PyObject *
_Py_XNewRefWithLock(PyObject *obj)
{
if (obj == NULL) {
return NULL;
}
return _Py_NewRefWithLock(obj);
}
static inline void
_PyObject_SetMaybeWeakref(PyObject *op)
{
if (_Py_IsImmortal(op)) {
return;
}
for (;;) {
Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared);
if ((shared & _Py_REF_SHARED_FLAG_MASK) != 0) {
// Nothing to do if it's in WEAKREFS, QUEUED, or MERGED states.
return;
}
if (_Py_atomic_compare_exchange_ssize(
&op->ob_ref_shared, &shared, shared | _Py_REF_MAYBE_WEAKREF)) {
return;
}
}
}
extern int _PyObject_ResurrectEndSlow(PyObject *op);
#endif
// Temporarily resurrects an object during deallocation. The refcount is set
// to one.
static inline void
_PyObject_ResurrectStart(PyObject *op)
{
assert(Py_REFCNT(op) == 0);
#ifdef Py_REF_DEBUG
_Py_IncRefTotal(_PyThreadState_GET());
#endif
#ifdef Py_GIL_DISABLED
_Py_atomic_store_uintptr_relaxed(&op->ob_tid, _Py_ThreadId());
_Py_atomic_store_uint32_relaxed(&op->ob_ref_local, 1);
_Py_atomic_store_ssize_relaxed(&op->ob_ref_shared, 0);
#else
Py_SET_REFCNT(op, 1);
#endif
}
// Undoes an object resurrection by decrementing the refcount without calling
// _Py_Dealloc(). Returns 0 if the object is dead (the normal case), and
// deallocation should continue. Returns 1 if the object is still alive.
static inline int
_PyObject_ResurrectEnd(PyObject *op)
{
#ifdef Py_REF_DEBUG
_Py_DecRefTotal(_PyThreadState_GET());
#endif
#ifndef Py_GIL_DISABLED
Py_SET_REFCNT(op, Py_REFCNT(op) - 1);
return Py_REFCNT(op) != 0;
#else
uint32_t local = _Py_atomic_load_uint32_relaxed(&op->ob_ref_local);
Py_ssize_t shared = _Py_atomic_load_ssize_acquire(&op->ob_ref_shared);
if (_Py_IsOwnedByCurrentThread(op) && local == 1 && shared == 0) {
// Fast-path: object has a single refcount and is owned by this thread
_Py_atomic_store_uint32_relaxed(&op->ob_ref_local, 0);
return 0;
}
// Slow-path: object has a shared refcount or is not owned by this thread
return _PyObject_ResurrectEndSlow(op);
#endif
}
/* Tries to incref op and returns 1 if successful or 0 otherwise. */
static inline int
_Py_TryIncref(PyObject *op)
{
#ifdef Py_GIL_DISABLED
return _Py_TryIncrefFast(op) || _Py_TryIncRefShared(op);
#else
if (Py_REFCNT(op) > 0) {
Py_INCREF(op);
return 1;
}
return 0;
#endif
}
#ifdef Py_REF_DEBUG
extern void _PyInterpreterState_FinalizeRefTotal(PyInterpreterState *);
extern void _Py_FinalizeRefTotal(_PyRuntimeState *);
extern void _PyDebug_PrintTotalRefs(void);
#endif
#ifdef Py_TRACE_REFS
extern void _Py_AddToAllObjects(PyObject *op);
extern void _Py_PrintReferences(PyInterpreterState *, FILE *);
extern void _Py_PrintReferenceAddresses(PyInterpreterState *, FILE *);
#endif
/* Return the *address* of the object's weaklist. The address may be
* dereferenced to get the current head of the weaklist. This is useful
* for iterating over the linked list of weakrefs, especially when the
* list is being modified externally (e.g. refs getting removed).
*
* The returned pointer should not be used to change the head of the list
* nor should it be used to add, remove, or swap any refs in the list.
* That is the sole responsibility of the code in weakrefobject.c.
*/
static inline PyObject **
_PyObject_GET_WEAKREFS_LISTPTR(PyObject *op)
{
if (PyType_Check(op) &&
((PyTypeObject *)op)->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) {
PyInterpreterState *interp = _PyInterpreterState_GET();
managed_static_type_state *state = _PyStaticType_GetState(
interp, (PyTypeObject *)op);
return _PyStaticType_GET_WEAKREFS_LISTPTR(state);
}
// Essentially _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET():
Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset;
return (PyObject **)((char *)op + offset);
}
/* This is a special case of _PyObject_GET_WEAKREFS_LISTPTR().
* Only the most fundamental lookup path is used.
* Consequently, static types should not be used.
*
* For static builtin types the returned pointer will always point
* to a NULL tp_weaklist. This is fine for any deallocation cases,
* since static types are never deallocated and static builtin types
* are only finalized at the end of runtime finalization.
*
* If the weaklist for static types is actually needed then use
* _PyObject_GET_WEAKREFS_LISTPTR().
*/
static inline PyWeakReference **
_PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(PyObject *op)
{
assert(!PyType_Check(op) ||
((PyTypeObject *)op)->tp_flags & Py_TPFLAGS_HEAPTYPE);
Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset;
return (PyWeakReference **)((char *)op + offset);
}
// Fast inlined version of PyObject_IS_GC()
static inline int
_PyObject_IS_GC(PyObject *obj)
{
PyTypeObject *type = Py_TYPE(obj);
return (PyType_IS_GC(type)
&& (type->tp_is_gc == NULL || type->tp_is_gc(obj)));
}
// Fast inlined version of PyObject_Hash()
static inline Py_hash_t
_PyObject_HashFast(PyObject *op)
{
if (PyUnicode_CheckExact(op)) {
Py_hash_t hash = FT_ATOMIC_LOAD_SSIZE_RELAXED(
_PyASCIIObject_CAST(op)->hash);
if (hash != -1) {
return hash;
}
}
return PyObject_Hash(op);
}
// Fast inlined version of PyType_IS_GC()
#define _PyType_IS_GC(t) _PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
static inline size_t
_PyType_PreHeaderSize(PyTypeObject *tp)
{
return (
#ifndef Py_GIL_DISABLED
_PyType_IS_GC(tp) * sizeof(PyGC_Head) +
#endif
_PyType_HasFeature(tp, Py_TPFLAGS_PREHEADER) * 2 * sizeof(PyObject *)
);
}
void _PyObject_GC_Link(PyObject *op);
// Usage: assert(_Py_CheckSlotResult(obj, "__getitem__", result != NULL));
extern int _Py_CheckSlotResult(
PyObject *obj,
const char *slot_name,
int success);
// Test if a type supports weak references
static inline int _PyType_SUPPORTS_WEAKREFS(PyTypeObject *type) {
return (type->tp_weaklistoffset != 0);
}
extern PyObject* _PyType_AllocNoTrack(PyTypeObject *type, Py_ssize_t nitems);
extern PyObject *_PyType_NewManagedObject(PyTypeObject *type);
extern PyTypeObject* _PyType_CalculateMetaclass(PyTypeObject *, PyObject *);
extern PyObject* _PyType_GetDocFromInternalDoc(const char *, const char *);
extern PyObject* _PyType_GetTextSignatureFromInternalDoc(const char *, const char *, int);
extern int _PyObject_SetAttributeErrorContext(PyObject *v, PyObject* name);
void _PyObject_InitInlineValues(PyObject *obj, PyTypeObject *tp);
extern int _PyObject_StoreInstanceAttribute(PyObject *obj,
PyObject *name, PyObject *value);
extern bool _PyObject_TryGetInstanceAttribute(PyObject *obj, PyObject *name,
PyObject **attr);
#ifdef Py_GIL_DISABLED
# define MANAGED_DICT_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-1)
# define MANAGED_WEAKREF_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-2)
#else
# define MANAGED_DICT_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-3)
# define MANAGED_WEAKREF_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-4)
#endif
typedef union {
PyDictObject *dict;
} PyManagedDictPointer;
static inline PyManagedDictPointer *
_PyObject_ManagedDictPointer(PyObject *obj)
{
assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
return (PyManagedDictPointer *)((char *)obj + MANAGED_DICT_OFFSET);
}
static inline PyDictObject *
_PyObject_GetManagedDict(PyObject *obj)
{
PyManagedDictPointer *dorv = _PyObject_ManagedDictPointer(obj);
return (PyDictObject *)FT_ATOMIC_LOAD_PTR_ACQUIRE(dorv->dict);
}
static inline PyDictValues *
_PyObject_InlineValues(PyObject *obj)
{
assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_INLINE_VALUES);
assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
assert(Py_TYPE(obj)->tp_basicsize == sizeof(PyObject));
return (PyDictValues *)((char *)obj + sizeof(PyObject));
}
extern PyObject ** _PyObject_ComputedDictPointer(PyObject *);
extern int _PyObject_IsInstanceDictEmpty(PyObject *);
// Export for 'math' shared extension
PyAPI_FUNC(PyObject*) _PyObject_LookupSpecial(PyObject *, PyObject *);
extern int _PyObject_IsAbstract(PyObject *);
PyAPI_FUNC(int) _PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method);
extern PyObject* _PyObject_NextNotImplemented(PyObject *);
// Pickle support.
// Export for '_datetime' shared extension
PyAPI_FUNC(PyObject*) _PyObject_GetState(PyObject *);
/* C function call trampolines to mitigate bad function pointer casts.
*
* Typical native ABIs ignore additional arguments or fill in missing
* values with 0/NULL in function pointer cast. Compilers do not show
* warnings when a function pointer is explicitly casted to an
* incompatible type.
*
* Bad fpcasts are an issue in WebAssembly. WASM's indirect_call has strict
* function signature checks. Argument count, types, and return type must
* match.
*
* Third party code unintentionally rely on problematic fpcasts. The call
* trampoline mitigates common occurrences of bad fpcasts on Emscripten.
*/
#if !(defined(__EMSCRIPTEN__) && defined(PY_CALL_TRAMPOLINE))
#define _PyCFunction_TrampolineCall(meth, self, args) \
(meth)((self), (args))
#define _PyCFunctionWithKeywords_TrampolineCall(meth, self, args, kw) \
(meth)((self), (args), (kw))
#endif // __EMSCRIPTEN__ && PY_CALL_TRAMPOLINE
// Export these 2 symbols for '_pickle' shared extension
PyAPI_DATA(PyTypeObject) _PyNone_Type;
PyAPI_DATA(PyTypeObject) _PyNotImplemented_Type;
// Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
// Export for the stable ABI.
PyAPI_DATA(int) _Py_SwappedOp[];
extern void _Py_GetConstant_Init(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTERNAL_OBJECT_H */