"""Word completion for GNU readline 2.0. This requires the latest extension to the readline module (the object=eval(expr, __main__.__dict__) words = dir(object) if hasattr(object,'__class__'): words.append('__class__') words=words+get_class_members(object.__class__) completes keywords, built-ins and globals in __main__; when completing NAME.NAME..., it evaluates (!) the expression up to the last dot and completes its attributes. It's very cool to do "import string" type "string.", hit the completion key (twice), and see the list of names defined by the def get_class_members(klass): ret=dir(klass) if hasattr(klass,'__bases__'): for base in klass.__bases__: ret=ret + get_class_members(base) return ret string module! Tip: to use the tab key as the completion key, call readline.parse_and_bind("tab: complete") Notes: - Exceptions raised by the completer function are *ignored* (and generally cause the completion to fail). This is a feature -- since readline sets the tty device in raw (or cbreak) mode, printing a traceback wouldn't work well without some complicated hoopla to save, reset and restore the tty state. - The evaluation of the NAME.NAME... form may cause arbitrary application defined code to be executed if an object with a __getattr__ hook is found. Since it is the responsibility of the application (or the user) to enable this feature, I consider this an acceptable risk. More complicated expressions (e.g. function calls or indexing operations) are *not* evaluated. - GNU readline is also used by the built-in functions input() and raw_input(), and thus these also benefit/suffer from the completer features. Clearly an interactive application can benefit by specifying its own completer function and using raw_input() for all its input. - When the original stdin is not a tty device, GNU readline is never used, and this module (and the readline module) are silently inactive. """ import readline import __builtin__ import __main__ class Completer: def complete(self, text, state): """Return the next possible completion for 'text'. This is called successively with state == 0, 1, 2, ... until it returns None. The completion should begin with 'text'. """ if state == 0: if "." in text: self.matches = self.attr_matches(text) else: self.matches = self.global_matches(text) try: return self.matches[state] except IndexError: return None def global_matches(self, text): """Compute matches when text is a simple name. Return a list of all keywords, built-in functions and names currently defines in __main__ that match. """ import keyword matches = [] n = len(text) for list in [keyword.kwlist, __builtin__.__dict__.keys(), __main__.__dict__.keys()]: for word in list: if word[:n] == text: matches.append(word) return matches def attr_matches(self, text): """Compute matches when text contains a dot. Assuming the text is of the form NAME.NAME....[NAME], and is evaluabable in the globals of __main__, it will be evaluated and its attributes (as revealed by dir()) are used as possible completions. (For class instances, class members are are also considered.) WARNING: this can still invoke arbitrary C code, if an object with a __getattr__ hook is evaluated. """ import re m = re.match(r"(\w+(\.\w+)*)\.(\w*)", text) if not m: return expr, attr = m.group(1, 3) object = eval(expr, __main__.__dict__) words = dir(object) if hasattr(object,'__class__'): words.append('__class__') words = words + get_class_members(object.__class__) matches = [] n = len(attr) for word in words: if word[:n] == attr: matches.append("%s.%s" % (expr, word)) return matches def get_class_members(klass): ret = dir(klass) if hasattr(klass,'__bases__'): for base in klass.__bases__: ret = ret + get_class_members(base) return ret readline.set_completer(Completer().complete)