"""distutils.command.build_py Implements the Distutils 'build_py' command.""" # created 1999/03/08, Greg Ward __rcsid__ = "$Id$" import sys, string, os from types import * from glob import glob from distutils.core import Command from distutils.errors import * class build_py (Command): description = "\"build\" pure Python modules (copy to build directory)" user_options = [ ('build-dir=', 'd', "directory for platform-shared files"), ] def initialize_options (self): self.build_dir = None self.modules = None self.package = None self.package_dir = None def finalize_options (self): self.set_undefined_options ('build', ('build_lib', 'build_dir')) # Get the distribution options that are aliases for build_py # options -- list of packages and list of modules. self.packages = self.distribution.packages self.modules = self.distribution.py_modules self.package_dir = self.distribution.package_dir def run (self): # XXX copy_file by default preserves atime and mtime. IMHO this is # the right thing to do, but perhaps it should be an option -- in # particular, a site administrator might want installed files to # reflect the time of installation rather than the last # modification time before the installed release. # XXX copy_file by default preserves mode, which appears to be the # wrong thing to do: if a file is read-only in the working # directory, we want it to be installed read/write so that the next # installation of the same module distribution can overwrite it # without problems. (This might be a Unix-specific issue.) Thus # we turn off 'preserve_mode' when copying to the build directory, # since the build directory is supposed to be exactly what the # installation will look like (ie. we preserve mode when # installing). # XXX copy_file does *not* preserve MacOS-specific file metadata. # If this is a problem for building/installing Python modules, then # we'll have to fix copy_file. (And what about installing scripts, # when the time comes for that -- does MacOS use its special # metadata to know that a file is meant to be interpreted by # Python?) infiles = [] outfiles = [] missing = [] # Two options control which modules will be installed: 'packages' # and 'modules'. The former lets us work with whole packages, not # specifying individual modules at all; the latter is for # specifying modules one-at-a-time. Currently they are mutually # exclusive: you can define one or the other (or neither), but not # both. It remains to be seen how limiting this is. # Dispose of the two "unusual" cases first: no pure Python modules # at all (no problem, just return silently), and over-specified # 'packages' and 'modules' options. if not self.modules and not self.packages: return if self.modules and self.packages: raise DistutilsOptionError, \ "build_py: supplying both 'packages' and 'modules' " + \ "options is not allowed" # Now we're down to two cases: 'modules' only and 'packages' only. if self.modules: self.build_modules () else: self.build_packages () # run () def get_package_dir (self, package): """Return the directory, relative to the top of the source distribution, where package 'package' should be found (at least according to the 'package_dir' option, if any).""" if type (package) is StringType: path = string.split (package, '.') elif type (package) in (TupleType, ListType): path = list (package) else: raise TypeError, "'package' must be a string, list, or tuple" if not self.package_dir: if path: return apply (os.path.join, path) else: return '' else: tail = [] while path: try: pdir = self.package_dir[string.join (path, '.')] except KeyError: tail.insert (0, path[-1]) del path[-1] else: tail.insert (0, pdir) return apply (os.path.join, tail) else: # arg! everything failed, we might as well have not even # looked in package_dir -- oh well if tail: return apply (os.path.join, tail) else: return '' # get_package_dir () def check_package (self, package, package_dir): # Empty dir name means current directory, which we can probably # assume exists. Also, os.path.exists and isdir don't know about # my "empty string means current dir" convention, so we have to # circumvent them. if package_dir != "": if not os.path.exists (package_dir): raise DistutilsFileError, \ "package directory '%s' does not exist" % package_dir if not os.path.isdir (package_dir): raise DistutilsFileErorr, \ ("supposed package directory '%s' exists, " + "but is not a directory") % package_dir # Require __init__.py for all but the "root package" if package: init_py = os.path.join (package_dir, "__init__.py") if not os.path.isfile (init_py): self.warn (("package init file '%s' not found " + "(or not a regular file)") % init_py) # check_package () def check_module (self, module, module_file): if not os.path.isfile (module_file): self.warn ("file %s (for module %s) not found" % (module_file, module)) return 0 else: return 1 # check_module () def find_package_modules (self, package, package_dir): module_files = glob (os.path.join (package_dir, "*.py")) module_pairs = [] setup_script = os.path.abspath (sys.argv[0]) for f in module_files: abs_f = os.path.abspath (f) if abs_f != setup_script: module = os.path.splitext (os.path.basename (f))[0] module_pairs.append ((module, f)) return module_pairs def find_modules (self): # Map package names to tuples of useful info about the package: # (package_dir, checked) # package_dir - the directory where we'll find source files for # this package # checked - true if we have checked that the package directory # is valid (exists, contains __init__.py, ... ?) packages = {} # List of (module, package, filename) tuples to return modules = [] # We treat modules-in-packages almost the same as toplevel modules, # just the "package" for a toplevel is empty (either an empty # string or empty list, depending on context). Differences: # - don't check for __init__.py in directory for empty package for module in self.modules: path = string.split (module, '.') package = tuple (path[0:-1]) module_base = path[-1] try: (package_dir, checked) = packages[package] except KeyError: package_dir = self.get_package_dir (package) checked = 0 if not checked: self.check_package (package, package_dir) packages[package] = (package_dir, 1) # XXX perhaps we should also check for just .pyc files # (so greedy closed-source bastards can distribute Python # modules too) module_file = os.path.join (package_dir, module_base + ".py") if not self.check_module (module, module_file): continue modules.append ((module, package, module_file)) return modules # find_modules () def get_source_files (self): if self.modules: modules = self.find_modules () else: modules = [] for package in self.packages: package_dir = self.get_package_dir (package) m = self.find_package_modules (package, package_dir) modules.extend (m) # Both find_modules() and find_package_modules() return a list of # tuples where the last element of each tuple is the filename -- # what a happy coincidence! filenames = [] for module in modules: filenames.append (module[-1]) return filenames def build_module (self, module, module_file, package): if type (package) is StringType: package = string.split (package, '.') elif type (package) not in (ListType, TupleType): raise TypeError, \ "'package' must be a string (dot-separated), list, or tuple" # Now put the module source file into the "build" area -- this is # easy, we just copy it somewhere under self.build_dir (the build # directory for Python source). outfile_path = list (package) outfile_path.append (module + ".py") outfile_path.insert (0, self.build_dir) outfile = apply (os.path.join, outfile_path) dir = os.path.dirname (outfile) self.mkpath (dir) self.copy_file (module_file, outfile, preserve_mode=0) def build_modules (self): modules = self.find_modules() for (module, package, module_file) in modules: # Now "build" the module -- ie. copy the source file to # self.build_dir (the build directory for Python source). # (Actually, it gets copied to the directory for this package # under self.build_dir.) self.build_module (module, module_file, package) # build_modules () def build_packages (self): for package in self.packages: package_dir = self.get_package_dir (package) self.check_package (package, package_dir) # Get list of (module, module_file) tuples based on scanning # the package directory. Here, 'module' is the *unqualified* # module name (ie. no dots, no package -- we already know its # package!), and module_file is the path to the .py file, # relative to the current directory (ie. including # 'package_dir'). modules = self.find_package_modules (package, package_dir) # Now loop over the modules we found, "building" each one (just # copy it to self.build_dir). for (module, module_file) in modules: self.build_module (module, module_file, package) # build_packages () # end class BuildPy