:mod:`fractions` --- Rational numbers ===================================== .. module:: fractions :synopsis: Rational numbers. .. moduleauthor:: Jeffrey Yasskin .. sectionauthor:: Jeffrey Yasskin The :mod:`fractions` module defines an immutable, infinite-precision Rational number class. .. class:: Fraction(numerator=0, denominator=1) Fraction(other_fraction) Fraction(string) The first version requires that *numerator* and *denominator* are instances of :class:`numbers.Integral` and returns a new ``Fraction`` representing ``numerator/denominator``. If *denominator* is :const:`0`, raises a :exc:`ZeroDivisionError`. The second version requires that *other_fraction* is an instance of :class:`numbers.Fraction` and returns an instance of :class:`Rational` with the same value. The third version expects a string of the form ``[-+]?[0-9]+(/[0-9]+)?``, optionally surrounded by spaces. Implements all of the methods and operations from :class:`numbers.Rational` and is immutable and hashable. .. method:: from_float(flt) This classmethod constructs a :class:`Fraction` representing the exact value of *flt*, which must be a :class:`float`. Beware that ``Fraction.from_float(0.3)`` is not the same value as ``Rational(3, 10)`` .. method:: from_decimal(dec) This classmethod constructs a :class:`Fraction` representing the exact value of *dec*, which must be a :class:`decimal.Decimal`. .. method:: limit_denominator(max_denominator=1000000) Finds and returns the closest :class:`Fraction` to ``self`` that has denominator at most max_denominator. This method is useful for finding rational approximations to a given floating-point number: >>> from fractions import Fraction >>> Fraction('3.1415926535897932').limit_denominator(1000) Fraction(355, 113) or for recovering a rational number that's represented as a float: >>> from math import pi, cos >>> Fraction.from_float(cos(pi/3)) Fraction(4503599627370497, 9007199254740992) >>> Fraction.from_float(cos(pi/3)).limit_denominator() Fraction(1, 2) .. method:: __floor__() Returns the greatest :class:`int` ``<= self``. Will be accessible through :func:`math.floor` in Py3k. .. method:: __ceil__() Returns the least :class:`int` ``>= self``. Will be accessible through :func:`math.ceil` in Py3k. .. method:: __round__() __round__(ndigits) The first version returns the nearest :class:`int` to ``self``, rounding half to even. The second version rounds ``self`` to the nearest multiple of ``Fraction(1, 10**ndigits)`` (logically, if ``ndigits`` is negative), again rounding half toward even. Will be accessible through :func:`round` in Py3k. .. seealso:: Module :mod:`numbers` The abstract base classes making up the numeric tower.