\documentclass{howto} \usepackage{ltxmarkup} \usepackage{times} \title{Installing Python Modules} % The audience for this document includes people who don't know anything % about Python and aren't about to learn the language just in order to % install and maintain it for their users, i.e. system administrators. % Thus, I have to be sure to explain the basics at some point: % sys.path and PYTHONPATH at least. Should probably give pointers to % other docs on "import site", PYTHONSTARTUP, PYTHONHOME, etc. % % Also, I need to take into account that most modules out there don't % (yet) use Distutils: briefly explain the old Makefile.pre.in % convention (maybe move material from the E&E manual to here?), and % explain where to copy .py and .so files manually if the distribution % doesn't provide a mechanism for doing so. % % Finally, it might be useful to include all the material from my "Care % and Feeding of a Python Installation" talk in here somewhere. Yow! % Hey wow, Guido didn't write this one either! \author{Greg Ward} \authoraddress{E-mail: \email{gward@python.net}} % Should these be added to the standard Python doc tools? (They'll be % needed for my "Distributing Python Modules" guide, too.) \newcommand{\command}[1]{\code{#1}} \newcommand{\option}[1]{\textsf{\small{#1}}} \newcommand{\filevar}[1]{{\textsl{\filenq{#1}}}} \newcommand{\homefile}[1]{\file{\tilde/#1}} \newcommand{\comingsoon}{\emph{Coming soon...}} % And how about these? Very handy for writing pathnames (tilde for % Unix, backslash for DOS/Windows). \renewcommand{\tilde}{\raisebox{-0.5ex}{\symbol{126}}} \newcommand{\bslash}{\symbol{92}} % XXX only works in tt fonts! \begin{document} \maketitle %\begin{abstract} %\noindent %Abstract this! %\end{abstract} \tableofcontents \section{Introduction} \label{sec:intro} \subsection{The new way: Distutils} \label{sec:new-way} \subsection{The old way (pure Python): whatever you feel like} \label{sec:old-way-pure} \subsection{The old way (extensions, \UNIX{} only): Makefile.pre.in} \label{sec:old-way-ext} \section{Standard Build and Install} \label{sec:normal-install} % This will cover: % * setup.py install (the usual thing) % * setup.py build (if you like doing things one-at-a-time) % * setup.py build install (not necessary unless you need to supply % build options--ref. next section) % * where things are installed, on Unix and Windows (Mac...?) % * simple custom install: "install --prefix=$HOME" \comingsoon % takes eight args (four pairs): % pure module distribution base + directory % non-pure module distribution base + directory % script base + directory % data base + directory % ...and will no doubt take more args in future! \newcommand{\installscheme}[8] {\begin{tableiii}{lll}{textrm} {Type of file} {Installation Directory} {Override option} \lineiii{pure module distribution} {\filevar{#1}\filenq{#2}} {\option{install-purelib}} \lineiii{non-pure module distribution} {\filevar{#3}\filenq{#4}} {\option{install-platlib}} \lineiii{scripts} {\filevar{#5}\filenq{#6}} {\option{install-scripts}} \lineiii{data} {\filevar{#7}\filenq{#8}} {\option{install-data}} \end{tableiii}} \section{Alternate Installation} \label{sec:alt-install} Often, it is necessary or desirable to install modules to a location other than the standard location for third-party Python modules. For example, on a Unix system you might not have permission to write to the standard third-party module directory. Or you might wish to try out a module before making it a standard part of your local Python installation; this is especially true when upgrading a distribution already present: you want to make sure your existing base of scripts still works with the new version before actually upgrading. The Distutils \command{install} command is designed to make installing module distributions to an alternate location simple and painless. The basic idea is that you supply a base directory for the installation, and the \command{install} command picks a set of directories (called an \emph{installation scheme}) under this base directory in which to install files. The details differ across platforms, so read whichever of the following section applies to you. \subsection{Alternate installation: Unix (the home scheme)} \label{sec:alt-unix-prefix} Under Unix, there are two ways to perform an alternate installation. The ``prefix scheme'' is similar to how alternate installation works under Windows and Mac OS, but is not necessarily the most useful way to maintain a personal Python library. Hence, we document the more convenient and commonly useful ``home scheme'' first. The idea behind the ``home scheme'' is that you are building and maintaining a personal stash of Python modules, probably under your home directory. Installing a new module distribution is as simple as \begin{verbatim} python setup.py install --home \end{verbatim} or \begin{verbatim} python setup.py install --home= \end{verbatim} where you can supply any directory you like for the \option{home} option. If you don't supply a directory (as in the first example above), the \command{install} command uses the \code{HOME} environment variable (or your official home directory as supplied by the password file, if \code{HOME} is not defined). The \option{home} option defines the installation base directory. Files are installed to the following directories under the installation base as follows: \installscheme{home}{/lib/python} {home}{/lib/python} {home}{/bin} {home}{/share} \subsection{Alternate installation: Unix (the prefix scheme)} \label{sec:alt-unix-home} The ``prefix scheme'' is useful when you wish to use one Python installation to perform the build/install (i.e., to run the setup script), but install modules into the third-party module directory of a different Python installation (or something that looks like a different Python installation). If this sounds a trifle unusual, it is---that's why the ``home scheme'' comes first. However, there are at least two known cases where the prefix scheme will be useful. First, consider that many Linux distribution put Python in \file{/usr}, rather than the more traditional \file{/usr/local}. This is entirely appropriate, since in those cases Python is part of ``the system'' rather than a local add-on. However, if you are installing Python modules from source, you probably want them to go in \file{/usr/local/lib/python1.\filevar{X}} rather than \file{/usr/lib/python1.\filevar{X}}. This can be done with \begin{verbatim} /usr/bin/python setup.py install --prefix=/usr/local \end{verbatim} Another possibility is a network filesystem where the name used to write to a remote directory is different from the name used to read it: for example, the Python interpreter accessed as \file{/usr/local/bin/python} might search for modules in \file{/usr/local/lib/python1.\filevar{X}}, but those modules would have to be installed to, say, \file{/mnt/\filevar{@server}/export/lib/python1.\filevar{X}}. This could be done with \begin{verbatim} /usr/local/bin/python setup.py install --prefix=/mnt/@server/export \end{verbatim} In either case, the \option{prefix} option defines the installation base, and the \option{exec-prefix} option defines the platform-specific installation base, which is used for platform-specific files. (Currently, this just means non-pure module distributions, but could be expanded to C libraries, binary executables, etc.) If \option{exec-prefix} is not supplied, it defaults to \option{prefix}. Files are installed as follows: \installscheme{prefix}{/lib/python1.\filevar{X}/site-packages} {exec-prefix}{/lib/python1.\filevar{X}/site-packages} {prefix}{/bin} {prefix}{/share} There is no requirement that \option{prefix} or \option{exec-prefix} actually point to an alternate Python installation; if the directories listed above do not already exist, they are created at installation time. Incidentally, the real reason the prefix scheme is important is simply that a standard Unix installation uses the prefix scheme, but with \option{prefix} and \option{exec-prefix} supplied by Python itself (as \code{sys.prefix} and \code{sys.exec\_prefix}). Thus, you might think you'll never use the prefix scheme, but every time you run \code{python setup.py install} without any other options, you're using it. Note that installing extensions to an alternate Python installation has no effect on how those extensions are built: in particular, the Python header files (\file{Python.h} and friends) installed with the Python interpreter used to run the setup script will be used in compiling extensions. It is your responsibility to ensure that the interpreter used to run extensions installed in this way is compatibile with the interpreter used to build them. The best way to ensure this is that the two interpreters are the same version of Python (possibly different builds, or possibly copies of the same build). (Of course, if your \option{prefix} and \option{exec-prefix} don't even point to an alternate Python installation, this is immaterial.) \subsection{Alternate installation: Windows} \label{sec:alt-windows} Since Windows has no conception of a user's home directory, and since the standard Python installation under Windows is simpler than that under Unix, there's no point in having separate \option{prefix} and \option{home} options. Just use the \option{prefix} option to specify a base directory, e.g. \begin{verbatim} python setup.py install --base="\Temp\Python" \end{verbatim} to install modules to the \file{\bslash{}Temp} directory on the current drive. The installation base is defined by the \option{prefix} option; the \option{exec-prefix} option is not supported under Windows. Files are installed as follows: \installscheme{prefix}{} {prefix}{} {prefix}{\bslash{}Scripts} {prefix}{\bslash{}Data} \subsection{Alternate installation: Mac OS} \label{sec:alt-macos} Like Windows, Mac OS has no notion of home directories (or even of users), and a fairly simple standard Python installation. Thus, only a \option{prefix} option is needed. It defines the installation base, and files are installed under it as follows: XXX how do MacPython users run the interpreter with command-line args? \installscheme{prefix}{:Lib} {prefix}{:Mac:PlugIns} {prefix}{} {prefix}{} XXX Corran Webster says: ``Modules are found in either \file{:Lib} or \file{:Mac:Lib}, while extensions usually go in \file{:Mac:PlugIns}''---does this mean that non-pure distributions should be divided between \file{:Mac:PlugIns} and \file{:Mac:Lib}? If so, that changes the granularity at which we care about modules: instead of ``modules from pure distributions'' and ``modules from non-pure distributions'', it becomes ``modules from pure distributions'', ``Python modules from non-pure distributions'', and ``extensions from non-pure distributions''. Is this necessary?!? \section{Custom Installation} \label{sec:custom-install} Sometimes, the alternate installation schemes described in section~\ref{sec:alt-install} just don't do what you want. You might want to tweak just one or two directories while keeping everything under the same base directory, or you might want to completely redefine the installation scheme. In either case, you're creating a \emph{custom installation scheme}. You probably noticed the column of ``override options'' in the tables describing the alternate installation schemes above. Those options are how you define a custom installation scheme. These override options can be relative, absolute, or explicitly defined in terms of one of the installation base directories. (There are two installation base directories, and they are normally the same---they only differ when you use the Unix ``prefix scheme'' and supply different \option{prefix} and \option{exec-prefix} options.) For example, say you're installing a module distribution to your home directory under Unix---but you want scripts to go in \file{\tilde/scripts} rather than \file{\tilde/bin}. As you might expect, you can override this directory with the \option{install-scripts} option; in this case, it makes most sense to supply a relative path, which will be interpreted relative to the installation base directory (your home directory, in this case): \begin{verbatim} python setup.py install --home --install-scripts=scripts \end{verbatim} Another Unix example: suppose your Python installation was built and installed with a prefix of \file{/usr/local/python}, so under a standard installation scripts will wind up in \file{/usr/local/python/bin}. If you want them in \file{/usr/local/bin} instead, you would supply this absolute directory for the \option{install-scripts} option: \begin{verbatim} python setup.py install --install-scripts=/usr/local/bin \end{verbatim} (This performs an installation using the ``prefix scheme,'' where the prefix is whatever your Python interpreter was installed with--- \file{/usr/local/python} in this case.) If you maintain Python on Windows, you might want third-party modules to live in a subdirectory of \filevar{prefix}, rather than right in \filevar{prefix} itself. This is almost as easy as customizing the script installation directory---you just have to remember that there are two types of modules to worry about, pure modules and non-pure modules (i.e., modules from a non-pure distribution). For example: \begin{verbatim} python setup.py install --install-purelib=Site --install-platlib=Site \end{verbatim} The specified installation directories are relative to \filevar{prefix}. Of course, you also have to ensure that these directories are in Python's module search path, e.g. by putting a \file{.pth} file in \filevar{prefix} (XXX should have a section describing .pth files and cross-ref it here). If you want to define an entire installation scheme, you just have to supply all of the installation directory options. The recommended way to do this is to supply relative paths; for example, if want to maintain all Python module-related files under \file{python} in your home directory, and you want a separate directory for each platform that you use your home directory from, you might define the following installation scheme: \begin{verbatim} python setup.py install --home \ --install-purelib=python/lib \ --install-platlib=python/lib.$PLAT \ --install-scripts=python/scripts --install-data=python/data \end{verbatim} or, equivalently, \begin{verbatim} python setup.py install --home=~/python \ --install-purelib=lib \ --install-platlib=lib.$PLAT \ --install-scripts=scripts --install-data=data \end{verbatim} \code{\$PLAT} is not (necessarily) an environment variable---it will be expanded by the Distutils as it parses your command line options (just as it does when parsing your configuration file(s)). Obviously, specifying the entire installation scheme every time you install a new module distribution would be very tedious. Thus, you can put these options into your Distutils config file (see section~\ref{sec:config-files}): \begin{verbatim} [install] install-base=$HOME install-purelib=python/lib install-platlib=python/lib.$PLAT install-scripts=python/scripts install-data=python/data \end{verbatim} or, equivalently, \begin{verbatim} [install] install-base=$HOME/python install-purelib=lib install-platlib=lib.$PLAT install-scripts=scripts install-data=data \end{verbatim} Note that these two are \emph{not} equivalent if you supply a different installation base directory when you run the setup script. For example, \begin{verbatim} python setup.py --install-base=/tmp \end{verbatim} would install pure modules to \filevar{/tmp/python/lib} in the first case, and to \filevar{/tmp/lib} in the second case. (For the second case, you probably want to supply an installation base of \file{/tmp/python}.) You probably noticed the use of \code{\$HOME} and \code{\$PLAT} in the sample configuration file input. These are Distutils configuration variables, which bear a strong resemblance to environment variables. In fact, you can use environment variables in config files, but the Distutils additionally define a few extra variables that may not be in your environment, such as \code{\$PATH}. See section~\ref{sec:config-files} for details. XXX need some Windows and Mac OS examples---when would custom installation schemes be needed on those platforms? \section{Configuration Files} \label{sec:config-files} \comingsoon \end{document}