#ifndef Py_INTERNAL_LONG_H #define Py_INTERNAL_LONG_H #ifdef __cplusplus extern "C" { #endif #ifndef Py_BUILD_CORE # error "this header requires Py_BUILD_CORE define" #endif #include "pycore_bytesobject.h" // _PyBytesWriter #include "pycore_global_objects.h"// _PY_NSMALLNEGINTS #include "pycore_runtime.h" // _PyRuntime /* * Default int base conversion size limitation: Denial of Service prevention. * * Chosen such that this isn't wildly slow on modern hardware and so that * everyone's existing deployed numpy test suite passes before * https://github.com/numpy/numpy/issues/22098 is widely available. * * $ python -m timeit -s 's = "1"*4300' 'int(s)' * 2000 loops, best of 5: 125 usec per loop * $ python -m timeit -s 's = "1"*4300; v = int(s)' 'str(v)' * 1000 loops, best of 5: 311 usec per loop * (zen2 cloud VM) * * 4300 decimal digits fits a ~14284 bit number. */ #define _PY_LONG_DEFAULT_MAX_STR_DIGITS 4300 /* * Threshold for max digits check. For performance reasons int() and * int.__str__() don't checks values that are smaller than this * threshold. Acts as a guaranteed minimum size limit for bignums that * applications can expect from CPython. * * % python -m timeit -s 's = "1"*640; v = int(s)' 'str(int(s))' * 20000 loops, best of 5: 12 usec per loop * * "640 digits should be enough for anyone." - gps * fits a ~2126 bit decimal number. */ #define _PY_LONG_MAX_STR_DIGITS_THRESHOLD 640 #if ((_PY_LONG_DEFAULT_MAX_STR_DIGITS != 0) && \ (_PY_LONG_DEFAULT_MAX_STR_DIGITS < _PY_LONG_MAX_STR_DIGITS_THRESHOLD)) # error "_PY_LONG_DEFAULT_MAX_STR_DIGITS smaller than threshold." #endif /* runtime lifecycle */ extern PyStatus _PyLong_InitTypes(PyInterpreterState *); extern void _PyLong_FiniTypes(PyInterpreterState *interp); /* other API */ #define _PyLong_SMALL_INTS _Py_SINGLETON(small_ints) // _PyLong_GetZero() and _PyLong_GetOne() must always be available // _PyLong_FromUnsignedChar must always be available #if _PY_NSMALLPOSINTS < 257 # error "_PY_NSMALLPOSINTS must be greater than or equal to 257" #endif // Return a reference to the immortal zero singleton. // The function cannot return NULL. static inline PyObject* _PyLong_GetZero(void) { return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS]; } // Return a reference to the immortal one singleton. // The function cannot return NULL. static inline PyObject* _PyLong_GetOne(void) { return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS+1]; } static inline PyObject* _PyLong_FromUnsignedChar(unsigned char i) { return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS+i]; } // _PyLong_Frexp returns a double x and an exponent e such that the // true value is approximately equal to x * 2**e. e is >= 0. x is // 0.0 if and only if the input is 0 (in which case, e and x are both // zeroes); otherwise, 0.5 <= abs(x) < 1.0. On overflow, which is // possible if the number of bits doesn't fit into a Py_ssize_t, sets // OverflowError and returns -1.0 for x, 0 for e. // // Export for 'math' shared extension PyAPI_DATA(double) _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e); extern PyObject* _PyLong_FromBytes(const char *, Py_ssize_t, int); // _PyLong_DivmodNear. Given integers a and b, compute the nearest // integer q to the exact quotient a / b, rounding to the nearest even integer // in the case of a tie. Return (q, r), where r = a - q*b. The remainder r // will satisfy abs(r) <= abs(b)/2, with equality possible only if q is // even. // // Export for '_datetime' shared extension. PyAPI_DATA(PyObject*) _PyLong_DivmodNear(PyObject *, PyObject *); // _PyLong_Format: Convert the long to a string object with given base, // appending a base prefix of 0[box] if base is 2, 8 or 16. // Export for '_tkinter' shared extension. PyAPI_DATA(PyObject*) _PyLong_Format(PyObject *obj, int base); // Export for 'math' shared extension PyAPI_DATA(PyObject*) _PyLong_Rshift(PyObject *, size_t); // Export for 'math' shared extension PyAPI_DATA(PyObject*) _PyLong_Lshift(PyObject *, size_t); PyAPI_FUNC(PyObject*) _PyLong_Add(PyLongObject *left, PyLongObject *right); PyAPI_FUNC(PyObject*) _PyLong_Multiply(PyLongObject *left, PyLongObject *right); PyAPI_FUNC(PyObject*) _PyLong_Subtract(PyLongObject *left, PyLongObject *right); // Export for 'binascii' shared extension. PyAPI_DATA(unsigned char) _PyLong_DigitValue[256]; /* Format the object based on the format_spec, as defined in PEP 3101 (Advanced String Formatting). */ extern int _PyLong_FormatAdvancedWriter( _PyUnicodeWriter *writer, PyObject *obj, PyObject *format_spec, Py_ssize_t start, Py_ssize_t end); extern int _PyLong_FormatWriter( _PyUnicodeWriter *writer, PyObject *obj, int base, int alternate); extern char* _PyLong_FormatBytesWriter( _PyBytesWriter *writer, char *str, PyObject *obj, int base, int alternate); // Argument converters used by Argument Clinic // Export for 'select' shared extension (Argument Clinic code) PyAPI_FUNC(int) _PyLong_UnsignedShort_Converter(PyObject *, void *); // Export for '_testclinic' shared extension (Argument Clinic code) PyAPI_FUNC(int) _PyLong_UnsignedInt_Converter(PyObject *, void *); // Export for '_blake2' shared extension (Argument Clinic code) PyAPI_FUNC(int) _PyLong_UnsignedLong_Converter(PyObject *, void *); // Export for '_blake2' shared extension (Argument Clinic code) PyAPI_FUNC(int) _PyLong_UnsignedLongLong_Converter(PyObject *, void *); // Export for '_testclinic' shared extension (Argument Clinic code) PyAPI_FUNC(int) _PyLong_Size_t_Converter(PyObject *, void *); /* Long value tag bits: * 0-1: Sign bits value = (1-sign), ie. negative=2, positive=0, zero=1. * 2: Reserved for immortality bit * 3+ Unsigned digit count */ #define SIGN_MASK 3 #define SIGN_ZERO 1 #define SIGN_NEGATIVE 2 #define NON_SIZE_BITS 3 /* The functions _PyLong_IsCompact and _PyLong_CompactValue are defined * in Include/cpython/longobject.h, since they need to be inline. * * "Compact" values have at least one bit to spare, * so that addition and subtraction can be performed on the values * without risk of overflow. * * The inline functions need tag bits. * For readability, rather than do `#define SIGN_MASK _PyLong_SIGN_MASK` * we define them to the numbers in both places and then assert that * they're the same. */ #if SIGN_MASK != _PyLong_SIGN_MASK # error "SIGN_MASK does not match _PyLong_SIGN_MASK" #endif #if NON_SIZE_BITS != _PyLong_NON_SIZE_BITS # error "NON_SIZE_BITS does not match _PyLong_NON_SIZE_BITS" #endif /* All *compact" values are guaranteed to fit into * a Py_ssize_t with at least one bit to spare. * In other words, for 64 bit machines, compact * will be signed 63 (or fewer) bit values */ /* Return 1 if the argument is compact int */ static inline int _PyLong_IsNonNegativeCompact(const PyLongObject* op) { assert(PyLong_Check(op)); return op->long_value.lv_tag <= (1 << NON_SIZE_BITS); } static inline int _PyLong_BothAreCompact(const PyLongObject* a, const PyLongObject* b) { assert(PyLong_Check(a)); assert(PyLong_Check(b)); return (a->long_value.lv_tag | b->long_value.lv_tag) < (2 << NON_SIZE_BITS); } static inline bool _PyLong_IsZero(const PyLongObject *op) { return (op->long_value.lv_tag & SIGN_MASK) == SIGN_ZERO; } static inline bool _PyLong_IsNegative(const PyLongObject *op) { return (op->long_value.lv_tag & SIGN_MASK) == SIGN_NEGATIVE; } static inline bool _PyLong_IsPositive(const PyLongObject *op) { return (op->long_value.lv_tag & SIGN_MASK) == 0; } static inline Py_ssize_t _PyLong_DigitCount(const PyLongObject *op) { assert(PyLong_Check(op)); return op->long_value.lv_tag >> NON_SIZE_BITS; } /* Equivalent to _PyLong_DigitCount(op) * _PyLong_NonCompactSign(op) */ static inline Py_ssize_t _PyLong_SignedDigitCount(const PyLongObject *op) { assert(PyLong_Check(op)); Py_ssize_t sign = 1 - (op->long_value.lv_tag & SIGN_MASK); return sign * (Py_ssize_t)(op->long_value.lv_tag >> NON_SIZE_BITS); } static inline int _PyLong_CompactSign(const PyLongObject *op) { assert(PyLong_Check(op)); assert(_PyLong_IsCompact(op)); return 1 - (op->long_value.lv_tag & SIGN_MASK); } static inline int _PyLong_NonCompactSign(const PyLongObject *op) { assert(PyLong_Check(op)); assert(!_PyLong_IsCompact(op)); return 1 - (op->long_value.lv_tag & SIGN_MASK); } /* Do a and b have the same sign? */ static inline int _PyLong_SameSign(const PyLongObject *a, const PyLongObject *b) { return (a->long_value.lv_tag & SIGN_MASK) == (b->long_value.lv_tag & SIGN_MASK); } #define TAG_FROM_SIGN_AND_SIZE(sign, size) ((1 - (sign)) | ((size) << NON_SIZE_BITS)) static inline void _PyLong_SetSignAndDigitCount(PyLongObject *op, int sign, Py_ssize_t size) { assert(size >= 0); assert(-1 <= sign && sign <= 1); assert(sign != 0 || size == 0); op->long_value.lv_tag = TAG_FROM_SIGN_AND_SIZE(sign, (size_t)size); } static inline void _PyLong_SetDigitCount(PyLongObject *op, Py_ssize_t size) { assert(size >= 0); op->long_value.lv_tag = (((size_t)size) << NON_SIZE_BITS) | (op->long_value.lv_tag & SIGN_MASK); } #define NON_SIZE_MASK ~((1 << NON_SIZE_BITS) - 1) static inline void _PyLong_FlipSign(PyLongObject *op) { unsigned int flipped_sign = 2 - (op->long_value.lv_tag & SIGN_MASK); op->long_value.lv_tag &= NON_SIZE_MASK; op->long_value.lv_tag |= flipped_sign; } #define _PyLong_DIGIT_INIT(val) \ { \ .ob_base = _PyObject_HEAD_INIT(&PyLong_Type), \ .long_value = { \ .lv_tag = TAG_FROM_SIGN_AND_SIZE( \ (val) == 0 ? 0 : ((val) < 0 ? -1 : 1), \ (val) == 0 ? 0 : 1), \ { ((val) >= 0 ? (val) : -(val)) }, \ } \ } #define _PyLong_FALSE_TAG TAG_FROM_SIGN_AND_SIZE(0, 0) #define _PyLong_TRUE_TAG TAG_FROM_SIGN_AND_SIZE(1, 1) #ifdef __cplusplus } #endif #endif /* !Py_INTERNAL_LONG_H */