/* Complex object implementation */ /* Borrows heavily from floatobject.c */ #ifndef WITHOUT_COMPLEX #include "allobjects.h" #include "modsupport.h" #include #include "mymath.h" #ifdef i860 /* Cray APP has bogus definition of HUGE_VAL in */ #undef HUGE_VAL #endif #ifdef HUGE_VAL #define CHECK(x) if (errno != 0) ; \ else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \ else errno = ERANGE #else #define CHECK(x) /* Don't know how to check */ #endif #ifdef HAVE_LIMITS_H #include #endif #ifndef LONG_MAX #define LONG_MAX 0X7FFFFFFFL #endif #ifndef LONG_MIN #define LONG_MIN (-LONG_MAX-1) #endif #ifdef __NeXT__ #ifdef __sparc__ /* * This works around a bug in the NS/Sparc 3.3 pre-release * limits.h header file. * 10-Feb-1995 bwarsaw@cnri.reston.va.us */ #undef LONG_MIN #define LONG_MIN (-LONG_MAX-1) #endif #endif #if !defined(__STDC__) && !defined(macintosh) extern double fmod PROTO((double, double)); extern double pow PROTO((double, double)); #endif /* elementary operations on complex numbers */ static int c_error; static Py_complex c_1 = {1., 0.}; Py_complex c_sum(a,b) Py_complex a,b; { Py_complex r; r.real = a.real + b.real; r.imag = a.imag + b.imag; return r; } Py_complex c_diff(a,b) Py_complex a,b; { Py_complex r; r.real = a.real - b.real; r.imag = a.imag - b.imag; return r; } Py_complex c_neg(a) Py_complex a; { Py_complex r; r.real = -a.real; r.imag = -a.imag; return r; } Py_complex c_prod(a,b) Py_complex a,b; { Py_complex r; r.real = a.real*b.real - a.imag*b.imag; r.imag = a.real*b.imag + a.imag*b.real; return r; } Py_complex c_quot(a,b) Py_complex a,b; { Py_complex r; double d = b.real*b.real + b.imag*b.imag; if (d == 0.) c_error = 1; r.real = (a.real*b.real + a.imag*b.imag)/d; r.imag = (a.imag*b.real - a.real*b.imag)/d; return r; } Py_complex c_pow(a,b) Py_complex a,b; { Py_complex r; double vabs,len,at,phase; if (b.real == 0. && b.imag == 0.) { r.real = 1.; r.imag = 0.; } else if (a.real == 0. && a.imag == 0.) { if (b.imag != 0. || b.real < 0.) c_error = 2; r.real = 0.; r.imag = 0.; } else { vabs = hypot(a.real,a.imag); len = pow(vabs,b.real); at = atan2(a.imag, a.real); phase = at*b.real; if (b.imag != 0.0) { len /= exp(at*b.imag); phase += b.imag*log(vabs); } r.real = len*cos(phase); r.imag = len*sin(phase); } return r; } static Py_complex c_powu(x, n) Py_complex x; long n; { Py_complex r, p; long mask = 1; r = c_1; p = x; while (mask > 0 && n >= mask) { if (n & mask) r = c_prod(r,p); mask <<= 1; p = c_prod(p,p); } return r; } static Py_complex c_powi(x, n) Py_complex x; long n; { Py_complex cn; if (n > 100 || n < -100) { cn.real = (double) n; cn.imag = 0.; return c_pow(x,cn); } else if (n > 0) return c_powu(x,n); else return c_quot(c_1,c_powu(x,-n)); } PyObject * PyComplex_FromCComplex(cval) Py_complex cval; { register complexobject *op = (complexobject *) malloc(sizeof(complexobject)); if (op == NULL) return err_nomem(); op->ob_type = &Complextype; op->cval = cval; NEWREF(op); return (object *) op; } PyObject * PyComplex_FromDoubles(real, imag) double real, imag; { Py_complex c; c.real = real; c.imag = imag; return PyComplex_FromCComplex(c); } double PyComplex_RealAsDouble(op) PyObject *op; { if (PyComplex_Check(op)) { return ((PyComplexObject *)op)->cval.real; } else { return PyFloat_AsDouble(op); } } double PyComplex_ImagAsDouble(op) PyObject *op; { if (PyComplex_Check(op)) { return ((PyComplexObject *)op)->cval.imag; } else { return 0.0; } } Py_complex PyComplex_AsCComplex(op) PyObject *op; { Py_complex cv; if (PyComplex_Check(op)) { return ((PyComplexObject *)op)->cval; } else { cv.real = PyFloat_AsDouble(op); cv.imag = 0.; return cv; } } static void complex_dealloc(op) object *op; { DEL(op); } static void complex_buf_repr(buf, v) char *buf; complexobject *v; { if (v->cval.real == 0.) sprintf(buf, "%.12gj", v->cval.imag); else sprintf(buf, "(%.12g%+.12gj)", v->cval.real, v->cval.imag); } static int complex_print(v, fp, flags) complexobject *v; FILE *fp; int flags; /* Not used but required by interface */ { char buf[100]; complex_buf_repr(buf, v); fputs(buf, fp); return 0; } static object * complex_repr(v) complexobject *v; { char buf[100]; complex_buf_repr(buf, v); return newstringobject(buf); } static int complex_compare(v, w) complexobject *v, *w; { /* Note: "greater" and "smaller" have no meaning for complex numbers, but Python requires that they be defined nevertheless. */ Py_complex i, j; i = v->cval; j = w->cval; if (i.real == j.real && i.imag == j.imag) return 0; else if (i.real != j.real) return (i.real < j.real) ? -1 : 1; else return (i.imag < j.imag) ? -1 : 1; } static long complex_hash(v) complexobject *v; { double intpart, fractpart; int expo; long x; /* This is designed so that Python numbers with the same value hash to the same value, otherwise comparisons of mapping keys will turn out weird */ #ifdef MPW /* MPW C modf expects pointer to extended as second argument */ { extended e; fractpart = modf(v->cval.real, &e); intpart = e; } #else fractpart = modf(v->cval.real, &intpart); #endif if (fractpart == 0.0) { if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) { /* Convert to long int and use its hash... */ object *w = dnewlongobject(v->cval.real); if (w == NULL) return -1; x = hashobject(w); DECREF(w); return x; } x = (long)intpart; } else { fractpart = frexp(fractpart, &expo); fractpart = fractpart*2147483648.0; /* 2**31 */ x = (long) (intpart + fractpart) ^ expo; /* Rather arbitrary */ } if (x == -1) x = -2; return x; } static object * complex_add(v, w) complexobject *v; complexobject *w; { return newcomplexobject(c_sum(v->cval,w->cval)); } static object * complex_sub(v, w) complexobject *v; complexobject *w; { return newcomplexobject(c_diff(v->cval,w->cval)); } static object * complex_mul(v, w) complexobject *v; complexobject *w; { return newcomplexobject(c_prod(v->cval,w->cval)); } static object * complex_div(v, w) complexobject *v; complexobject *w; { Py_complex quot; c_error = 0; quot = c_quot(v->cval,w->cval); if (c_error == 1) { err_setstr(ZeroDivisionError, "float division"); return NULL; } return newcomplexobject(quot); } static object * complex_remainder(v, w) complexobject *v; complexobject *w; { err_setstr(TypeError, "remainder and divmod not implemented for complex numbers"); return NULL; } #define complex_divmod complex_remainder static object * complex_pow(v, w, z) complexobject *v; object *w; complexobject *z; { Py_complex p; Py_complex exponent; long int_exponent; if ((object *)z!=None) { err_setstr(ValueError, "complex modulo"); return NULL; } c_error = 0; exponent = ((complexobject*)w)->cval; int_exponent = (long)exponent.real; if (exponent.imag == 0. && exponent.real == int_exponent) p = c_powi(v->cval,int_exponent); else p = c_pow(v->cval,exponent); if (c_error == 2) { err_setstr(ValueError, "0.0 to a negative or complex power"); return NULL; } return newcomplexobject(p); } static object * complex_neg(v) complexobject *v; { Py_complex neg; neg.real = -v->cval.real; neg.imag = -v->cval.imag; return newcomplexobject(neg); } static object * complex_pos(v) complexobject *v; { INCREF(v); return (object *)v; } static object * complex_abs(v) complexobject *v; { return newfloatobject(hypot(v->cval.real,v->cval.imag)); } static int complex_nonzero(v) complexobject *v; { return v->cval.real != 0.0 && v->cval.imag != 0.0; } static int complex_coerce(pv, pw) object **pv; object **pw; { Py_complex cval; cval.imag = 0.; if (is_intobject(*pw)) { cval.real = (double)getintvalue(*pw); *pw = newcomplexobject(cval); INCREF(*pv); return 0; } else if (is_longobject(*pw)) { cval.real = dgetlongvalue(*pw); *pw = newcomplexobject(cval); INCREF(*pv); return 0; } else if (is_floatobject(*pw)) { cval.real = getfloatvalue(*pw); *pw = newcomplexobject(cval); INCREF(*pv); return 0; } return 1; /* Can't do it */ } static object * complex_int(v) object *v; { double x = ((complexobject *)v)->cval.real; if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN : (x = floor(x)) > (double)LONG_MAX) { err_setstr(OverflowError, "float too large to convert"); return NULL; } return newintobject((long)x); } static object * complex_long(v) object *v; { double x = ((complexobject *)v)->cval.real; return dnewlongobject(x); } static object * complex_float(v) object *v; { double x = ((complexobject *)v)->cval.real; return newfloatobject(x); } static object * complex_new(self, args) object *self; object *args; { Py_complex cval; cval.imag = 0.; if (!PyArg_ParseTuple(args, "d|d", &cval.real, &cval.imag)) return NULL; return newcomplexobject(cval); } static object * complex_conjugate(self) object *self; { Py_complex c; c = ((complexobject *)self)->cval; c.imag = -c.imag; return newcomplexobject(c); } static PyMethodDef complex_methods[] = { {"conjugate", (PyCFunction)complex_conjugate, 1}, {NULL, NULL} /* sentinel */ }; static object * complex_getattr(self, name) complexobject *self; char *name; { Py_complex cval; if (strcmp(name, "real") == 0) return (object *)newfloatobject(self->cval.real); else if (strcmp(name, "imag") == 0) return (object *)newfloatobject(self->cval.imag); else if (strcmp(name, "conj") == 0) { cval.real = self->cval.real; cval.imag = -self->cval.imag; return (object *)newcomplexobject(cval); } return findmethod(complex_methods, (object *)self, name); } static number_methods complex_as_number = { (binaryfunc)complex_add, /*nb_add*/ (binaryfunc)complex_sub, /*nb_subtract*/ (binaryfunc)complex_mul, /*nb_multiply*/ (binaryfunc)complex_div, /*nb_divide*/ (binaryfunc)complex_remainder, /*nb_remainder*/ (binaryfunc)complex_divmod, /*nb_divmod*/ (ternaryfunc)complex_pow, /*nb_power*/ (unaryfunc)complex_neg, /*nb_negative*/ (unaryfunc)complex_pos, /*nb_positive*/ (unaryfunc)complex_abs, /*nb_absolute*/ (inquiry)complex_nonzero, /*nb_nonzero*/ 0, /*nb_invert*/ 0, /*nb_lshift*/ 0, /*nb_rshift*/ 0, /*nb_and*/ 0, /*nb_xor*/ 0, /*nb_or*/ (coercion)complex_coerce, /*nb_coerce*/ (unaryfunc)complex_int, /*nb_int*/ (unaryfunc)complex_long, /*nb_long*/ (unaryfunc)complex_float, /*nb_float*/ 0, /*nb_oct*/ 0, /*nb_hex*/ }; typeobject Complextype = { OB_HEAD_INIT(&Typetype) 0, "complex", sizeof(complexobject), 0, (destructor)complex_dealloc, /*tp_dealloc*/ (printfunc)complex_print, /*tp_print*/ (getattrfunc)complex_getattr, /*tp_getattr*/ 0, /*tp_setattr*/ (cmpfunc)complex_compare, /*tp_compare*/ (reprfunc)complex_repr, /*tp_repr*/ &complex_as_number, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ (hashfunc)complex_hash, /*tp_hash*/ }; #endif