/*********************************************************** Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. While CWI is the initial source for this software, a modified version is made available by the Corporation for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org. STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* List object implementation */ #include "Python.h" #ifdef STDC_HEADERS #include #else #include /* For size_t */ #endif #define ROUNDUP(n, PyTryBlock) \ ((((n)+(PyTryBlock)-1)/(PyTryBlock))*(PyTryBlock)) static int roundupsize(n) int n; { if (n < 500) return ROUNDUP(n, 10); else return ROUNDUP(n, 100); } #define NRESIZE(var, type, nitems) PyMem_RESIZE(var, type, roundupsize(nitems)) PyObject * PyList_New(size) int size; { int i; PyListObject *op; size_t nbytes; if (size < 0) { PyErr_BadInternalCall(); return NULL; } nbytes = size * sizeof(PyObject *); /* Check for overflow */ if (nbytes / sizeof(PyObject *) != (size_t)size) { return PyErr_NoMemory(); } op = (PyListObject *) malloc(sizeof(PyListObject)); if (op == NULL) { return PyErr_NoMemory(); } if (size <= 0) { op->ob_item = NULL; } else { op->ob_item = (PyObject **) malloc(nbytes); if (op->ob_item == NULL) { free((ANY *)op); return PyErr_NoMemory(); } } op->ob_type = &PyList_Type; op->ob_size = size; for (i = 0; i < size; i++) op->ob_item[i] = NULL; _Py_NewReference(op); return (PyObject *) op; } int PyList_Size(op) PyObject *op; { if (!PyList_Check(op)) { PyErr_BadInternalCall(); return -1; } else return ((PyListObject *)op) -> ob_size; } static PyObject *indexerr; PyObject * PyList_GetItem(op, i) PyObject *op; int i; { if (!PyList_Check(op)) { PyErr_BadInternalCall(); return NULL; } if (i < 0 || i >= ((PyListObject *)op) -> ob_size) { if (indexerr == NULL) indexerr = PyString_FromString( "list index out of range"); PyErr_SetObject(PyExc_IndexError, indexerr); return NULL; } return ((PyListObject *)op) -> ob_item[i]; } int PyList_SetItem(op, i, newitem) register PyObject *op; register int i; register PyObject *newitem; { register PyObject *olditem; register PyObject **p; if (!PyList_Check(op)) { Py_XDECREF(newitem); PyErr_BadInternalCall(); return -1; } if (i < 0 || i >= ((PyListObject *)op) -> ob_size) { Py_XDECREF(newitem); PyErr_SetString(PyExc_IndexError, "list assignment index out of range"); return -1; } p = ((PyListObject *)op) -> ob_item + i; olditem = *p; *p = newitem; Py_XDECREF(olditem); return 0; } static int ins1(self, where, v) PyListObject *self; int where; PyObject *v; { int i; PyObject **items; if (v == NULL) { PyErr_BadInternalCall(); return -1; } items = self->ob_item; NRESIZE(items, PyObject *, self->ob_size+1); if (items == NULL) { PyErr_NoMemory(); return -1; } if (where < 0) where = 0; if (where > self->ob_size) where = self->ob_size; for (i = self->ob_size; --i >= where; ) items[i+1] = items[i]; Py_INCREF(v); items[where] = v; self->ob_item = items; self->ob_size++; return 0; } int PyList_Insert(op, where, newitem) PyObject *op; int where; PyObject *newitem; { if (!PyList_Check(op)) { PyErr_BadInternalCall(); return -1; } return ins1((PyListObject *)op, where, newitem); } int PyList_Append(op, newitem) PyObject *op; PyObject *newitem; { if (!PyList_Check(op)) { PyErr_BadInternalCall(); return -1; } return ins1((PyListObject *)op, (int) ((PyListObject *)op)->ob_size, newitem); } /* Methods */ static void list_dealloc(op) PyListObject *op; { int i; if (op->ob_item != NULL) { for (i = 0; i < op->ob_size; i++) { Py_XDECREF(op->ob_item[i]); } free((ANY *)op->ob_item); } free((ANY *)op); } static int list_print(op, fp, flags) PyListObject *op; FILE *fp; int flags; { int i; i = Py_ReprEnter((PyObject*)op); if (i != 0) { if (i < 0) return i; fprintf(fp, "[...]"); return 0; } fprintf(fp, "["); for (i = 0; i < op->ob_size; i++) { if (i > 0) fprintf(fp, ", "); if (PyObject_Print(op->ob_item[i], fp, 0) != 0) { Py_ReprLeave((PyObject *)op); return -1; } } fprintf(fp, "]"); Py_ReprLeave((PyObject *)op); return 0; } static PyObject * list_repr(v) PyListObject *v; { PyObject *s, *comma; int i; i = Py_ReprEnter((PyObject*)v); if (i != 0) { if (i > 0) return PyString_FromString("[...]"); return NULL; } s = PyString_FromString("["); comma = PyString_FromString(", "); for (i = 0; i < v->ob_size && s != NULL; i++) { if (i > 0) PyString_Concat(&s, comma); PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i])); } Py_XDECREF(comma); PyString_ConcatAndDel(&s, PyString_FromString("]")); Py_ReprLeave((PyObject *)v); return s; } static int list_compare(v, w) PyListObject *v, *w; { int len = (v->ob_size < w->ob_size) ? v->ob_size : w->ob_size; int i; for (i = 0; i < len; i++) { int cmp = PyObject_Compare(v->ob_item[i], w->ob_item[i]); if (cmp != 0) return cmp; } return v->ob_size - w->ob_size; } static int list_length(a) PyListObject *a; { return a->ob_size; } static PyObject * list_item(a, i) PyListObject *a; int i; { if (i < 0 || i >= a->ob_size) { if (indexerr == NULL) indexerr = PyString_FromString( "list index out of range"); PyErr_SetObject(PyExc_IndexError, indexerr); return NULL; } Py_INCREF(a->ob_item[i]); return a->ob_item[i]; } static PyObject * list_slice(a, ilow, ihigh) PyListObject *a; int ilow, ihigh; { PyListObject *np; int i; if (ilow < 0) ilow = 0; else if (ilow > a->ob_size) ilow = a->ob_size; if (ihigh < 0) ihigh = 0; if (ihigh < ilow) ihigh = ilow; else if (ihigh > a->ob_size) ihigh = a->ob_size; np = (PyListObject *) PyList_New(ihigh - ilow); if (np == NULL) return NULL; for (i = ilow; i < ihigh; i++) { PyObject *v = a->ob_item[i]; Py_INCREF(v); np->ob_item[i - ilow] = v; } return (PyObject *)np; } PyObject * PyList_GetSlice(a, ilow, ihigh) PyObject *a; int ilow, ihigh; { if (!PyList_Check(a)) { PyErr_BadInternalCall(); return NULL; } return list_slice((PyListObject *)a, ilow, ihigh); } static PyObject * list_concat(a, bb) PyListObject *a; PyObject *bb; { int size; int i; PyListObject *np; if (!PyList_Check(bb)) { PyErr_BadArgument(); return NULL; } #define b ((PyListObject *)bb) size = a->ob_size + b->ob_size; np = (PyListObject *) PyList_New(size); if (np == NULL) { return NULL; } for (i = 0; i < a->ob_size; i++) { PyObject *v = a->ob_item[i]; Py_INCREF(v); np->ob_item[i] = v; } for (i = 0; i < b->ob_size; i++) { PyObject *v = b->ob_item[i]; Py_INCREF(v); np->ob_item[i + a->ob_size] = v; } return (PyObject *)np; #undef b } static PyObject * list_repeat(a, n) PyListObject *a; int n; { int i, j; int size; PyListObject *np; PyObject **p; if (n < 0) n = 0; size = a->ob_size * n; np = (PyListObject *) PyList_New(size); if (np == NULL) return NULL; p = np->ob_item; for (i = 0; i < n; i++) { for (j = 0; j < a->ob_size; j++) { *p = a->ob_item[j]; Py_INCREF(*p); p++; } } return (PyObject *) np; } static int list_ass_slice(a, ilow, ihigh, v) PyListObject *a; int ilow, ihigh; PyObject *v; { /* Because [X]DECREF can recursively invoke list operations on this list, we must postpone all [X]DECREF activity until after the list is back in its canonical shape. Therefore we must allocate an additional array, 'recycle', into which we temporarily copy the items that are deleted from the list. :-( */ PyObject **recycle, **p; PyObject **item; int n; /* Size of replacement list */ int d; /* Change in size */ int k; /* Loop index */ #define b ((PyListObject *)v) if (v == NULL) n = 0; else if (PyList_Check(v)) { n = b->ob_size; if (a == b) { /* Special case "a[i:j] = a" -- copy b first */ int ret; v = list_slice(b, 0, n); ret = list_ass_slice(a, ilow, ihigh, v); Py_DECREF(v); return ret; } } else { PyErr_BadArgument(); return -1; } if (ilow < 0) ilow = 0; else if (ilow > a->ob_size) ilow = a->ob_size; if (ihigh < 0) ihigh = 0; if (ihigh < ilow) ihigh = ilow; else if (ihigh > a->ob_size) ihigh = a->ob_size; item = a->ob_item; d = n - (ihigh-ilow); if (ihigh > ilow) p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow)); else p = recycle = NULL; if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */ for (k = ilow; k < ihigh; k++) *p++ = item[k]; if (d < 0) { for (/*k = ihigh*/; k < a->ob_size; k++) item[k+d] = item[k]; a->ob_size += d; NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */ a->ob_item = item; } } else { /* Insert d items; recycle ihigh-ilow items */ NRESIZE(item, PyObject *, a->ob_size + d); if (item == NULL) { PyMem_XDEL(recycle); PyErr_NoMemory(); return -1; } for (k = a->ob_size; --k >= ihigh; ) item[k+d] = item[k]; for (/*k = ihigh-1*/; k >= ilow; --k) *p++ = item[k]; a->ob_item = item; a->ob_size += d; } for (k = 0; k < n; k++, ilow++) { PyObject *w = b->ob_item[k]; Py_XINCREF(w); item[ilow] = w; } if (recycle) { while (--p >= recycle) Py_XDECREF(*p); PyMem_DEL(recycle); } return 0; #undef b } int PyList_SetSlice(a, ilow, ihigh, v) PyObject *a; int ilow, ihigh; PyObject *v; { if (!PyList_Check(a)) { PyErr_BadInternalCall(); return -1; } return list_ass_slice((PyListObject *)a, ilow, ihigh, v); } static int list_ass_item(a, i, v) PyListObject *a; int i; PyObject *v; { PyObject *old_value; if (i < 0 || i >= a->ob_size) { PyErr_SetString(PyExc_IndexError, "list assignment index out of range"); return -1; } if (v == NULL) return list_ass_slice(a, i, i+1, v); Py_INCREF(v); old_value = a->ob_item[i]; a->ob_item[i] = v; Py_DECREF(old_value); return 0; } static PyObject * ins(self, where, v) PyListObject *self; int where; PyObject *v; { if (ins1(self, where, v) != 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * listinsert(self, args) PyListObject *self; PyObject *args; { int i; PyObject *v; if (!PyArg_Parse(args, "(iO)", &i, &v)) return NULL; return ins(self, i, v); } static PyObject * listappend(self, args) PyListObject *self; PyObject *args; { PyObject *v; if (!PyArg_Parse(args, "O", &v)) return NULL; return ins(self, (int) self->ob_size, v); } /* New quicksort implementation for arrays of object pointers. Thanks to discussions with Tim Peters. */ /* CMPERROR is returned by our comparison function when an error occurred. This is the largest negative integer (0x80000000 on a 32-bit system). */ #define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) ) /* Comparison function. Takes care of calling a user-supplied comparison function (any callable Python object). Calls the standard comparison function, cmpobject(), if the user-supplied function is NULL. */ static int docompare(x, y, compare) PyObject *x; PyObject *y; PyObject *compare; { PyObject *args, *res; int i; if (compare == NULL) { i = PyObject_Compare(x, y); if (i && PyErr_Occurred()) i = CMPERROR; return i; } args = Py_BuildValue("(OO)", x, y); if (args == NULL) return CMPERROR; res = PyEval_CallObject(compare, args); Py_DECREF(args); if (res == NULL) return CMPERROR; if (!PyInt_Check(res)) { Py_DECREF(res); PyErr_SetString(PyExc_TypeError, "comparison function should return int"); return CMPERROR; } i = PyInt_AsLong(res); Py_DECREF(res); if (i < 0) return -1; if (i > 0) return 1; return 0; } /* MINSIZE is the smallest array we care to partition; smaller arrays are sorted using binary insertion. It must be at least 4 for the quicksort implementation to work. Binary insertion always requires fewer compares than quicksort, but does O(N**2) data movement. The more expensive compares, the larger MINSIZE should be. */ #define MINSIZE 49 /* STACKSIZE is the size of our work stack. A rough estimate is that this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large enough. (Because of the way we push the biggest partition first, the worst case occurs when all subarrays are always partitioned exactly in two.) */ #define STACKSIZE 64 /* quicksort algorithm. Return -1 if an exception occurred; in this case we leave the array partly sorted but otherwise in good health (i.e. no items have been removed or duplicated). */ static int quicksort(array, size, compare) PyObject **array; /* Start of array to sort */ int size; /* Number of elements to sort */ PyObject *compare;/* Comparison function object, or NULL for default */ { register PyObject *tmp, *pivot; register PyObject **l, **r, **p; PyObject **lo, **hi, **notp; int top, k, n, lisp, risp; PyObject **lostack[STACKSIZE]; PyObject **histack[STACKSIZE]; /* Start out with the whole array on the work stack */ lostack[0] = array; histack[0] = array+size; top = 1; /* Repeat until the work stack is empty */ while (--top >= 0) { lo = lostack[top]; hi = histack[top]; n = hi - lo; /* If it's a small one, use binary insertion sort */ if (n < MINSIZE) { for (notp = lo+1; notp < hi; ++notp) { /* set l to where *notp belongs */ l = lo; r = notp; pivot = *r; do { p = l + ((r - l) >> 1); k = docompare(pivot, *p, compare); if (k == CMPERROR) return -1; if (k < 0) r = p; else l = p + 1; } while (l < r); /* Pivot should go at l -- slide over to make room. Caution: using memmove is much slower under MSVC 5; we're not usually moving many slots. */ for (p = notp; p > l; --p) *p = *(p-1); *l = pivot; } continue; } /* Choose median of first, middle and last as pivot */ l = lo; /* First */ p = lo + (n>>1); /* Middle */ r = hi - 1; /* Last */ k = docompare(*p, *l, compare); if (k == CMPERROR) return -1; if (k < 0) { tmp = *p; *p = *l; *l = tmp; } k = docompare(*r, *p, compare); if (k == CMPERROR) return -1; if (k < 0) { tmp = *r; *r = *p; *p = tmp; } k = docompare(*p, *l, compare); if (k == CMPERROR) return -1; if (k < 0) { tmp = *p; *p = *l; *l = tmp; } pivot = *p; l++; r--; /* Partition the array */ for (;;) { lisp = risp = 1; /* presumed guilty */ /* Move left index to element >= pivot */ while (l < p) { k = docompare(*l, pivot, compare); if (k == CMPERROR) return -1; if (k < 0) l++; else { lisp = 0; break; } } /* Move right index to element <= pivot */ while (r > p) { k = docompare(pivot, *r, compare); if (k == CMPERROR) return -1; if (k < 0) r--; else { risp = 0; break; } } if (lisp == risp) { /* assert l < p < r or l == p == r * This is the most common case, so we * strive to get back to the top of the * loop ASAP. */ tmp = *l; *l = *r; *r = tmp; l++; r--; if (l < r) continue; break; } /* One (exactly) of the pointers is at p */ /* assert (p == l) ^ (p == r) */ notp = lisp ? r : l; k = (r - l) >> 1; if (k) { *p = *notp; if (lisp) { p = r - k; l++; } else { p = l + k; r--; } /* assert l < p < r */ *notp = *p; *p = pivot; /* for consistency */ continue; } /* assert l+1 == r */ *p = *notp; *notp = pivot; p = notp; break; } /* end of partitioning loop */ /* assert *p == pivot All in [lo,p) are <= pivot At p == pivot All in [p+1,hi) are >= pivot */ r = p; l = p + 1; /* Partitions are [lo,r) and [l,hi). * See whether *l == pivot; we know *l >= pivot, so * they're equal iff *l <= pivot too, or not pivot < *l. * This wastes a compare if it fails, but can win big * when there are runs of duplicates. */ k = docompare(pivot, *l, compare); if (k == CMPERROR) return -1; if (!(k < 0)) { /* Now extend as far as possible (around p) so that: All in [lo,r) are <= pivot All in [r,l) are == pivot All in [l,hi) are >= pivot Mildly tricky: continue using only "<" -- we deduce equality indirectly. */ while (r > lo) { /* because r-1 < p, *(r-1) <= pivot is known */ k = docompare(*(r-1), pivot, compare); if (k == CMPERROR) return -1; if (k < 0) break; /* <= and not < implies == */ r--; } l++; while (l < hi) { /* because l > p, pivot <= *l is known */ k = docompare(pivot, *l, compare); if (k == CMPERROR) return -1; if (k < 0) break; /* <= and not < implies == */ l++; } } /* end of checking for duplicates */ /* Push biggest partition first */ if (r - lo >= hi - l) { /* First one is bigger */ lostack[top] = lo; histack[top++] = r; lostack[top] = l; histack[top++] = hi; } else { /* Second one is bigger */ lostack[top] = l; histack[top++] = hi; lostack[top] = lo; histack[top++] = r; } /* Should assert top <= STACKSIZE */ } /* Success */ return 0; } static PyObject * listsort(self, compare) PyListObject *self; PyObject *compare; { /* XXX Don't you *dare* changing the list's length in compare()! */ if (quicksort(self->ob_item, self->ob_size, compare) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * listreverse(self, args) PyListObject *self; PyObject *args; { register PyObject **p, **q; register PyObject *tmp; if (args != NULL) { PyErr_BadArgument(); return NULL; } if (self->ob_size > 1) { for (p = self->ob_item, q = self->ob_item + self->ob_size - 1; p < q; p++, q--) { tmp = *p; *p = *q; *q = tmp; } } Py_INCREF(Py_None); return Py_None; } int PyList_Reverse(v) PyObject *v; { if (v == NULL || !PyList_Check(v)) { PyErr_BadInternalCall(); return -1; } v = listreverse((PyListObject *)v, (PyObject *)NULL); if (v == NULL) return -1; Py_DECREF(v); return 0; } int PyList_Sort(v) PyObject *v; { if (v == NULL || !PyList_Check(v)) { PyErr_BadInternalCall(); return -1; } v = listsort((PyListObject *)v, (PyObject *)NULL); if (v == NULL) return -1; Py_DECREF(v); return 0; } PyObject * PyList_AsTuple(v) PyObject *v; { PyObject *w; PyObject **p; int n; if (v == NULL || !PyList_Check(v)) { PyErr_BadInternalCall(); return NULL; } n = ((PyListObject *)v)->ob_size; w = PyTuple_New(n); if (w == NULL) return NULL; p = ((PyTupleObject *)w)->ob_item; memcpy((ANY *)p, (ANY *)((PyListObject *)v)->ob_item, n*sizeof(PyObject *)); while (--n >= 0) { Py_INCREF(*p); p++; } return w; } static PyObject * listindex(self, args) PyListObject *self; PyObject *args; { int i; if (args == NULL) { PyErr_BadArgument(); return NULL; } for (i = 0; i < self->ob_size; i++) { if (PyObject_Compare(self->ob_item[i], args) == 0) return PyInt_FromLong((long)i); if (PyErr_Occurred()) return NULL; } PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list"); return NULL; } static PyObject * listcount(self, args) PyListObject *self; PyObject *args; { int count = 0; int i; if (args == NULL) { PyErr_BadArgument(); return NULL; } for (i = 0; i < self->ob_size; i++) { if (PyObject_Compare(self->ob_item[i], args) == 0) count++; if (PyErr_Occurred()) return NULL; } return PyInt_FromLong((long)count); } static PyObject * listremove(self, args) PyListObject *self; PyObject *args; { int i; if (args == NULL) { PyErr_BadArgument(); return NULL; } for (i = 0; i < self->ob_size; i++) { if (PyObject_Compare(self->ob_item[i], args) == 0) { if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) return NULL; Py_INCREF(Py_None); return Py_None; } if (PyErr_Occurred()) return NULL; } PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list"); return NULL; } static PyMethodDef list_methods[] = { {"append", (PyCFunction)listappend}, {"insert", (PyCFunction)listinsert}, {"remove", (PyCFunction)listremove}, {"index", (PyCFunction)listindex}, {"count", (PyCFunction)listcount}, {"reverse", (PyCFunction)listreverse}, {"sort", (PyCFunction)listsort, 0}, {NULL, NULL} /* sentinel */ }; static PyObject * list_getattr(f, name) PyListObject *f; char *name; { return Py_FindMethod(list_methods, (PyObject *)f, name); } static PySequenceMethods list_as_sequence = { (inquiry)list_length, /*sq_length*/ (binaryfunc)list_concat, /*sq_concat*/ (intargfunc)list_repeat, /*sq_repeat*/ (intargfunc)list_item, /*sq_item*/ (intintargfunc)list_slice, /*sq_slice*/ (intobjargproc)list_ass_item, /*sq_ass_item*/ (intintobjargproc)list_ass_slice, /*sq_ass_slice*/ }; PyTypeObject PyList_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "list", sizeof(PyListObject), 0, (destructor)list_dealloc, /*tp_dealloc*/ (printfunc)list_print, /*tp_print*/ (getattrfunc)list_getattr, /*tp_getattr*/ 0, /*tp_setattr*/ (cmpfunc)list_compare, /*tp_compare*/ (reprfunc)list_repr, /*tp_repr*/ 0, /*tp_as_number*/ &list_as_sequence, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ };