than when this interval was first established. Checking too frequently just
adds needless overhead because most of the time there is nothing to do and
no other threads ready to run.
globals, _Py_Ticker and _Py_CheckInterval. This also implements Jeremy's
shortcut in Py_AddPendingCall that zeroes out _Py_Ticker. This allows the
test in the main loop to only test a single value.
The gory details are at
http://python.org/sf/602191
Use a slightly different strategy to determine when not to call the line
trace function. This removes the need for the RETURN_NONE opcode, so
that's gone again. Update docs and comments to match.
Thanks to Neal and Armin!
Also add a test suite. This should have come with the original patch...
in LOAD_GLOBAL. Besides saving a C function call, it saves checks
whether f_globals and f_builtins are dicts, and extracting and testing
the string object's hash code is done only once. We bail out of the
inlining if the name is not exactly a string, or when its hash is -1;
because of interning, neither should ever happen. I believe interning
guarantees that the hash code is set, and I believe that the 'names'
tuple of a code object always contains interned strings, but I'm not
assuming that -- I'm simply testing hash != -1.
On my home machine, this makes a pystone variant with new-style
classes and slots run at the same speed as classic pystone! (With
new-style classes but without slots, it is still a lot slower.)
Also, don't handle METH_OLDARGS on the fast path. All the interesting
builtins have been converted to use METH_NOARGS, METH_O, or
METH_VARARGS.
Result is another 1-2% speedup. If I can cobble together 10 of these,
it might make a difference.
This makes the code much easier to ready, because it is at a sane
indentation level. On my box this shows a 1-2% speedup, which means
nothing, except that I'm not going to worry about the performance
effects of the change.
nothing special done if keyword arguments were present, so test for
that earlier and fall through to the normal case if there are any.
This ought to slow down CFunction calls with keyword args, but I don't
care; it's a tiny (1%) improvement for pystone.
- Use PyObject_Call() instead of PyEval_CallObject(), saves several
layers of calls and checks.
- Pre-allocate the argument tuple rather than calling Py_BuildValue()
each time round the loop.
- For filter(None, seq), avoid an INCREF and a DECREF.
warning for 'global None', but that's either accompanied by an
assignment to None, which will trigger a warning, or not, in which
case it's harmless. :-)
[ 587993 ] SET_LINENO killer
Remove SET_LINENO. Tracing is now supported by inspecting co_lnotab.
Many sundry changes to document and adapt to this change.
currently return inconsistent results for ints and longs; in
particular: hex/oct/%u/%o/%x/%X of negative short ints, and x<<n that
either loses bits or changes sign. (No warnings for repr() of a long,
though that will also change to lose the trailing 'L' eventually.)
This introduces some warnings in the test suite; I'll take care of
those later.
Change the parser and compiler to use PyMalloc.
Only the files implementing processes that will request memory
allocations small enough for PyMalloc to be a win have been
changed, which are:-
- Python/compile.c
- Parser/acceler.c
- Parser/node.c
- Parser/parsetok.c
This augments the aggressive overallocation strategy implemented by
Tim Peters in PyNode_AddChild() [Parser/node.c], in reducing the
impact of platform malloc()/realloc()/free() corner case behaviour.
Such corner cases are known to be triggered by test_longexp and
test_import.
Jeremy Hylton, in accepting this patch, recommended this as a
bugfix candidate for 2.2. While the changes to Python/compile.c
and Parser/node.c backport easily (and could go in), the changes
to Parser/acceler.c and Parser/parsetok.c require other not
insignificant changes as a result of the differences in the memory
APIs between 2.3 and 2.2, which I'm not in a position to work
through at the moment. This is a pity, as the Parser/parsetok.c
changes are the most important after the Parser/node.c changes, due
to the size of the memory requests involved and their frequency.
actual script to run in case we are running from an applet. If we are indeed
running an applet we skip the normal option processing leaving it all to the
applet code.
This allows us to get use the normal python binary in the Python.app bundle,
giving us all the normal command line options through PythonLauncher while
still allowing Python.app to be used as the template for building applets.
Consequently, pythonforbundle is gone, and Mac/Python/macmain.c isn't used
on OSX anymore.
See there for a description.
Added test case.
Bugfix candidate for 2.2.x, not sure about previous versions:
probably low priority, because virtually no one runs debug builds.
PyErr_SetExcFromWindowsErr(), PyErr_SetExcFromWindowsErrWithFilename().
Similar to PyErr_SetFromWindowsErrWithFilename() and
PyErr_SetFromWindowsErr(), but they allow to specify
the exception type to raise. Available on Windows.
See SF patch #576458.
is slow things down unnecessarily and make tracing much more verbose.
Something like
def f(n):
return [i for i in range(n) if i%2]
should have at most two SET_LINENO instructions, not four. When tracing,
the current line number should be printed once, not 2*n+1 times.
The staticforward define was needed to support certain broken C
compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
static keyword when it was used with a forward declaration of a static
initialized structure. Standard C allows the forward declaration with
static, and we've decided to stop catering to broken C compilers. (In
fact, we expect that the compilers are all fixed eight years later.)
I'm leaving staticforward and statichere defined in object.h as
static. This is only for backwards compatibility with C extensions
that might still use it.
XXX I haven't updated the documentation.
more trivial lexical helper macros so that uses of these guys expand
to nothing at all when they're not enabled. This should help sub-
standard compilers that can't do a good job of optimizing away the
previous "(void)0" expressions.
Py_DECREF: There's only one definition of this now. Yay! That
was that last one in the family defined multiple times in an #ifdef
maze.
Py_FatalError(): Changed the char* signature to const char*.
_Py_NegativeRefcount(): New helper function for the Py_REF_DEBUG
expansion of Py_DECREF. Calling an external function cuts down on
the volume of generated code. The previous inline expansion of abort()
didn't work as intended on Windows (the program often kept going, and
the error msg scrolled off the screen unseen). _Py_NegativeRefcount
calls Py_FatalError instead, which captures our best knowledge of
how to abort effectively across platforms.
that have taken me "too long" to reverse-engineer over the years.
Vastly reduced the nesting level and redundancy of #ifdef-ery.
Took a light stab at repairing comments that are no longer true.
sys_gettotalrefcount(): Changed to enable under Py_REF_DEBUG.
It was enabled under Py_TRACE_REFS, which was much heavier than
necessary. sys.gettotalrefcount() is now available in a
Py_REF_DEBUG-only build.
This patch enhances Python/import.c/find_module() so
that unicode objects found in sys.path will be treated
as legal directory names (The current code ignores
anything that is not a str). The unicode name is
converted to str using Py_FileSystemDefaultEncoding.
These built-in functions are replaced by their (now callable) type:
slice()
buffer()
and these types can also be called (but have no built-in named
function named after them)
classobj (type name used to be "class")
code
function
instance
instancemethod (type name used to be "instance method")
The module "new" has been replaced with a small backward compatibility
placeholder in Python.
A large portion of the patch simply removes the new module from
various platform-specific build recipes. The following binary Mac
project files still have references to it:
Mac/Build/PythonCore.mcp
Mac/Build/PythonStandSmall.mcp
Mac/Build/PythonStandalone.mcp
[I've tweaked the code layout and the doc strings here and there, and
added a comment to types.py about StringTypes vs. basestring. --Guido]
Write 4 bytes for co_stacksize, etc. to prevent writing out
bad .pyc files which can cause a crash when read back in.
(I forgot that frozen needs to be updated too for the test.)
This was a simple typo. Strange that the compiler didn't catch it!
Instead of WHY_CONTINUE, two tests used CONTINUE_LOOP, which isn't a
why_code at all, but an opcode; but even though 'why' is declared as
an enum, comparing it to an int is apparently not even worth a
warning -- not in gcc, and not in VC++. :-(
Will fix in 2.2 too.
get_file() must convert 'U' to "r" PY_STDIOTEXTMODE before calling
fopen().
imp_load_module() must accept 'r' or 'U' or something with '+'.
Also reflow some long lines.
for 'str' and 'unicode', and can be used instead of
types.StringTypes, e.g. to test whether something is "a string":
isinstance(x, string) is True for Unicode and 8-bit strings. This
is an abstract base class and cannot be instantiated directly.
The old syntax suggested that a trailing comma was OK inside backticks,
but in fact (due to ideosyncrasies of pgen) it was not. Fix the grammar
to avoid the ambiguity. Fred: you may want to update the refman.
[ 558249 ] softspace vs --disable-unicode
And #endif was in the wrong place.
Bugfix candidate, almost surely.
I think I will embark on squashing test failures in --disable-unicode builds --
a Real Bug was hiding under them.
don't understand how this function works, also beefed up the docs. The
most common usage error is of this form (often spread out across gotos):
if (_PyString_Resize(&s, n) < 0) {
Py_DECREF(s);
s = NULL;
goto outtahere;
}
The error is that if _PyString_Resize runs out of memory, it automatically
decrefs the input string object s (which also deallocates it, since its
refcount must be 1 upon entry), and sets s to NULL. So if the "if"
branch ever triggers, it's an error to call Py_DECREF(s): s is already
NULL! A correct way to write the above is the simpler (and intended)
if (_PyString_Resize(&s, n) < 0)
goto outtahere;
Bugfix candidate.
The SIGXFSZ signal is sent when the maximum file size limit is
exceeded (RLIMIT_FSIZE). Apparently, it is also sent when the 2GB
file limit is reached on platforms without large file support.
The default action for SIGXFSZ is to terminate the process and dump
core. When it is ignored, the system call that caused the limit to be
exceeded returns an error and sets errno to EFBIG. Python
always checks errno on I/O syscalls, so there is nothing to do with
the signal.
+ Redirect PyMem_{Del, DEL} to the object allocator's free() when
pymalloc is enabled. Needed so old extensions can continue to
mix PyObject_New with PyMem_DEL.
+ This implies that pgen needs to be able to see the PyObject_XYZ
declarations too. pgenheaders.h now includes Python.h. An
implication is that I expect obmalloc.o needs to get linked into
pgen on non-Windows boxes.
+ When PYMALLOC_DEBUG is defined, *all* Py memory API functions
now funnel through the debug allocator wrapper around pymalloc.
This is the default in a debug build.
+ That caused compile.c to fail: it indirectly mixed PyMem_Malloc
with raw platform free() in one place. This is verbotten.
Highlights: import and friends will understand any of \r, \n and \r\n
as end of line. Python file input will do the same if you use mode 'U'.
Everything can be disabled by configuring with --without-universal-newlines.
See PEP278 for details.