make the callers figure out the right tzinfo arguments to pass, instead of
making the callees guess. The code is uglier this way, but it's less
brittle (when the callee guesses, the caller can get surprised).
of the timetz case. A tzinfo method will always see a datetimetz arg,
or None, now. In the former case, it's still possible that it will get
a datetimetz argument belonging to a different timezone. That will get
fixed next.
operands have identical tzinfo members (meaning object identity -- "is").
I misunderstood the intent here, reading wrong conclusion into
conflicting clues.
be trusted with years before 1900, so now we raise ValueError if a date or
datetime or datetimetz .strftime() method is called with a year before
1900.
such that the datetime tests failed if the envar PYTHON2K was set.
This is an utter mess, and the datetime module's strftime functions
inherit it. I suspect that, regardless of the PYTHON2K setting, and
regardless of platform limitations, the datetime strftime wrappers
will end up delivering nonsense results (or bogus exceptions) for
any year before 1900. I should probably just refuse to accept years
earlier than that -- else we'll have to implement strftime() by hand.
{timetz,datetimetz}.{utcoffset,dst}() now return a timedelta (or None)
instead of an int (or None).
tzinfo.{utcoffset,dst)() can now return a timedelta (or an int, or None).
Curiously, this was much easier to do in the C implementation than in the
Python implementation (which lives in the Zope3 code tree) -- the C code
already had lots of hair to extract C ints from offset objects, and used
C ints internally.
used that.
wrap_strftime(): Removed the most irritating uses of buf.
TestDate.test_ordinal_conversions(): The C implementation is fast enough
that we can afford to check the endpoints of every year. Also added
tm_yday tests at the endpoints.