mirror of https://github.com/python/cpython.git
Documentation for the difflib module, converted from the module docstrings.
This commit is contained in:
parent
f828e2d737
commit
baf71422b8
|
@ -0,0 +1,315 @@
|
|||
\section{\module{difflib} ---
|
||||
Helpers for computing deltas}
|
||||
|
||||
\declaremodule{standard}{difflib}
|
||||
\modulesynopsis{Helpers for computing differences between objects.}
|
||||
\moduleauthor{Tim Peters}{tim.one@home.com}
|
||||
\sectionauthor{Tim Peters}{tim.one@home.com}
|
||||
% LaTeXification by Fred L. Drake, Jr. <fdrake@acm.org>.
|
||||
|
||||
\begin{funcdesc}{get_close_matches}{word, possibilities\optional{,
|
||||
n\optional{, cutoff}}}
|
||||
Return a list of the best ``good enough'' matches. \var{word} is a
|
||||
sequence for which close matches are desired (typically a string),
|
||||
and \var{possibilities} is a list of sequences against which to
|
||||
match \var{word} (typically a list of strings).
|
||||
|
||||
Optional argument \var{n} (default \code{3}) is the maximum number
|
||||
of close matches to return; \var{n} must be greater than \code{0}.
|
||||
|
||||
Optional argument \var{cutoff} (default \code{0.6}) is a float in
|
||||
the range [0, 1]. Possibilities that don't score at least that
|
||||
similar to \var{word} are ignored.
|
||||
|
||||
The best (no more than \var{n}) matches among the possibilities are
|
||||
returned in a list, sorted by similarity score, most similar first.
|
||||
|
||||
\begin{verbatim}
|
||||
>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'])
|
||||
['apple', 'ape']
|
||||
>>> import keyword
|
||||
>>> get_close_matches('wheel', keyword.kwlist)
|
||||
['while']
|
||||
>>> get_close_matches('apple', keyword.kwlist)
|
||||
[]
|
||||
>>> get_close_matches('accept', keyword.kwlist)
|
||||
['except']
|
||||
\end{verbatim}
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{classdesc}{SequenceMatcher}{\unspecified}
|
||||
This is a flexible class for comparing pairs of sequences of any
|
||||
type, so long as the sequence elements are hashable. The basic
|
||||
algorithm predates, and is a little fancier than, an algorithm
|
||||
published in the late 1980's by Ratcliff and Obershelp under the
|
||||
hyperbolic name ``gestalt pattern matching.'' The idea is to find
|
||||
the longest contiguous matching subsequence that contains no
|
||||
``junk'' elements (the Ratcliff and Obershelp algorithm doesn't
|
||||
address junk). The same idea is then applied recursively to the
|
||||
pieces of the sequences to the left and to the right of the matching
|
||||
subsequence. This does not yield minimal edit sequences, but does
|
||||
tend to yield matches that ``look right'' to people.
|
||||
|
||||
\strong{Timing:} The basic Ratcliff-Obershelp algorithm is cubic
|
||||
time in the worst case and quadratic time in the expected case.
|
||||
\class{SequenceMatcher} is quadratic time for the worst case and has
|
||||
expected-case behavior dependent on how many elements the sequences
|
||||
have in common; best case time (no elements in common) is linear.
|
||||
\end{classdesc}
|
||||
|
||||
|
||||
\subsection{SequenceMatcher Objects \label{sequence-matcher}}
|
||||
|
||||
\begin{classdesc}{SequenceMatcher}{\optional{isjunk\optional{,
|
||||
a\optional{, b}}}}
|
||||
Optional argument \var{isjunk} must be \code{None} (the default) or
|
||||
a one-argument function that takes a sequence element and returns
|
||||
true if and only if the element is ``junk'' and should be ignored.
|
||||
\code{None} is equivalent to passing \code{lambda x: 0}, i.e.\ no
|
||||
elements are ignored. For example, pass
|
||||
|
||||
\begin{verbatim}
|
||||
lambda x: x in " \\t"
|
||||
\end{verbatim}
|
||||
|
||||
if you're comparing lines as sequences of characters, and don't want
|
||||
to synch up on blanks or hard tabs.
|
||||
|
||||
The optional arguments \var{a} and \var{b} are sequences to be
|
||||
compared; both default to empty strings. The elements of both
|
||||
sequences must be hashable.
|
||||
\end{classdesc}
|
||||
|
||||
|
||||
\class{SequenceMatcher} objects have the following methods:
|
||||
|
||||
\begin{methoddesc}{set_seqs}{a, b}
|
||||
Set the two sequences to be compared.
|
||||
\end{methoddesc}
|
||||
|
||||
\class{SequenceMatcher} computes and caches detailed information about
|
||||
the second sequence, so if you want to compare one sequence against
|
||||
many sequences, use \method{set_seq2()} to set the commonly used
|
||||
sequence once and call \method{set_seq1()} repeatedly, once for each
|
||||
of the other sequences.
|
||||
|
||||
\begin{methoddesc}{set_seq1}{a}
|
||||
Set the first sequence to be compared. The second sequence to be
|
||||
compared is not changed.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{set_seq2}{b}
|
||||
Set the second sequence to be compared. The first sequence to be
|
||||
compared is not changed.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{find_longest_match}{alo, ahi, blo, bhi}
|
||||
Find longest matching block in \code{\var{a}[\var{alo}:\var{ahi}]}
|
||||
and \code{\var{b}[\var{blo}:\var{bhi}]}.
|
||||
|
||||
If \var{isjunk} was omitted or \code{None},
|
||||
\method{get_longest_match()} returns \code{(\var{i}, \var{j},
|
||||
\var{k})} such that \code{\var{a}[\var{i}:\var{i}+\var{k}]} is equal
|
||||
to \code{\var{b}[\var{j}:\var{j}+\var{k}]}, where
|
||||
\code{\var{alo} <= \var{i} <= \var{i}+\var{k} <= \var{ahi}} and
|
||||
\code{\var{blo} <= \var{j} <= \var{j}+\var{k} <= \var{bhi}}.
|
||||
For all \code{(\var{i'}, \var{j'}, \var{k'})} meeting those
|
||||
conditions, the additional conditions
|
||||
\code{\var{k} >= \var{k'}},
|
||||
\code{\var{i} <= \var{i'}},
|
||||
and if \code{\var{i} == \var{i'}}, \code{\var{j} <= \var{j'}}
|
||||
are also met.
|
||||
In other words, of all maximal matching blocks, return one that
|
||||
starts earliest in \var{a}, and of all those maximal matching blocks
|
||||
that start earliest in \var{a}, return the one that starts earliest
|
||||
in \var{b}.
|
||||
|
||||
\begin{verbatim}
|
||||
>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
|
||||
>>> s.find_longest_match(0, 5, 0, 9)
|
||||
(0, 4, 5)
|
||||
\end{verbatim}
|
||||
|
||||
If \var{isjunk} was provided, first the longest matching block is
|
||||
determined as above, but with the additional restriction that no
|
||||
junk element appears in the block. Then that block is extended as
|
||||
far as possible by matching (only) junk elements on both sides.
|
||||
So the resulting block never matches on junk except as identical
|
||||
junk happens to be adjacent to an interesting match.
|
||||
|
||||
Here's the same example as before, but considering blanks to be junk.
|
||||
That prevents \code{' abcd'} from matching the \code{ abcd} at the
|
||||
tail end of the second sequence directly. Instead only the
|
||||
\code{'abcd'} can match, and matches the leftmost \code{'abcd'} in
|
||||
the second sequence:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
|
||||
>>> s.find_longest_match(0, 5, 0, 9)
|
||||
(1, 0, 4)
|
||||
\end{verbatim}
|
||||
|
||||
If no blocks match, this returns \code{(\var{alo}, \var{blo}, 0)}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{get_matching_blocks}{}
|
||||
Return list of triples describing matching subsequences.
|
||||
Each triple is of the form \code{(\var{i}, \var{j}, \var{n})}, and
|
||||
means that \code{\var{a}[\var{i}:\var{i}+\var{n}] ==
|
||||
\var{b}[\var{j}:\var{j}+\var{n}]}. The triples are monotonically
|
||||
increasing in \var{i} and \var{j}.
|
||||
|
||||
The last triple is a dummy, and has the value \code{(len(\var{a}),
|
||||
len(\var{b}), 0)}. It is the only triple with \code{\var{n} == 0}.
|
||||
% Explain why a dummy is used!
|
||||
|
||||
\begin{verbatim}
|
||||
>>> s = SequenceMatcher(None, "abxcd", "abcd")
|
||||
>>> s.get_matching_blocks()
|
||||
[(0, 0, 2), (3, 2, 2), (5, 4, 0)]
|
||||
\end{verbatim}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{get_opcodes}{}
|
||||
Return list of 5-tuples describing how to turn \var{a} into \var{b}.
|
||||
Each tuple is of the form \code{(\var{tag}, \var{i1}, \var{i2},
|
||||
\var{j1}, \var{j2})}. The first tuple has \code{\var{i1} ==
|
||||
\var{j1} == 0}, and remaining tuples have \var{i1} equal to the
|
||||
\var{i2} from the preceeding tuple, and, likewise, \var{j1} equal to
|
||||
the previous \var{j2}.
|
||||
|
||||
The \var{tag} values are strings, with these meanings:
|
||||
|
||||
\begin{tableii}{l|l}{code}{Value}{Meaning}
|
||||
\lineii{'replace'}{\code{\var{a}[\var{i1}:\var{i2}]} should be
|
||||
replaced by \code{\var{b}[\var{j1}:\var{j2}]}.}
|
||||
\lineii{'delete'}{\code{\var{a}[\var{i1}:\var{i2}]} should be
|
||||
deleted. Note that \code{\var{j1} == \var{j2}} in
|
||||
this case.}
|
||||
\lineii{'insert'}{\code{\var{b}[\var{j1}:\var{j2}]} should be
|
||||
inserted at \code{\var{a}[\var{i1}:\var{i1}]}.
|
||||
Note that \code{\var{i1} == \var{i2}} in this
|
||||
case.}
|
||||
\lineii{'equal'}{\code{\var{a}[\var{i1}:\var{i2}] ==
|
||||
\var{b}[\var{j1}:\var{j2}]} (the sub-sequences are
|
||||
equal).}
|
||||
\end{tableii}
|
||||
|
||||
For example:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> a = "qabxcd"
|
||||
>>> b = "abycdf"
|
||||
>>> s = SequenceMatcher(None, a, b)
|
||||
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
|
||||
... print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
|
||||
... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))
|
||||
delete a[0:1] (q) b[0:0] ()
|
||||
equal a[1:3] (ab) b[0:2] (ab)
|
||||
replace a[3:4] (x) b[2:3] (y)
|
||||
equal a[4:6] (cd) b[3:5] (cd)
|
||||
insert a[6:6] () b[5:6] (f)
|
||||
\end{verbatim}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{ratio}{}
|
||||
Return a measure of the sequences' similarity as a float in the
|
||||
range [0, 1].
|
||||
|
||||
Where T is the total number of elements in both sequences, and M is
|
||||
the number of matches, this is 2,0*M / T. Note that this is \code{1}
|
||||
if the sequences are identical, and \code{0} if they have nothing in
|
||||
common.
|
||||
|
||||
This is expensive to compute if \method{get_matching_blocks()} or
|
||||
\method{get_opcodes()} hasn't already been called, in which case you
|
||||
may want to try \method{quick_ratio()} or
|
||||
\method{real_quick_ratio()} first to get an upper bound.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{quick_ratio}{}
|
||||
Return an upper bound on \method{ratio()} relatively quickly.
|
||||
|
||||
This isn't defined beyond that it is an upper bound on
|
||||
\method{ratio()}, and is faster to compute.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{real_quick_ratio}{}
|
||||
Return an upper bound on \method{ratio()} very quickly.
|
||||
|
||||
This isn't defined beyond that it is an upper bound on
|
||||
\method{ratio()}, and is faster to compute than either
|
||||
\method{ratio()} or \method{quick_ratio()}.
|
||||
\end{methoddesc}
|
||||
|
||||
The three methods that return the ratio of differences to similarities
|
||||
can give different results due to differing levels of approximation:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> s = SequenceMatcher(None, "abcd", "bcde")
|
||||
>>> s.ratio()
|
||||
0.75
|
||||
>>> s.quick_ratio()
|
||||
0.75
|
||||
>>> s.real_quick_ratio()
|
||||
1.0
|
||||
\end{verbatim}
|
||||
|
||||
|
||||
\subsection{Examples \label{difflib-examples}}
|
||||
|
||||
|
||||
This example compares two strings, considering blanks to be ``junk:''
|
||||
|
||||
\begin{verbatim}
|
||||
>>> s = SequenceMatcher(lambda x: x == " ",
|
||||
... "private Thread currentThread;",
|
||||
... "private volatile Thread currentThread;")
|
||||
\end{verbatim}
|
||||
|
||||
\method{ratio()} returns a float in [0, 1], measuring the similarity
|
||||
of the sequences. As a rule of thumb, a \method{ratio()} value over
|
||||
0.6 means the sequences are close matches:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> print round(s.ratio(), 3)
|
||||
0.866
|
||||
\end{verbatim}
|
||||
|
||||
If you're only interested in where the sequences match,
|
||||
\method{get_matching_blocks()} is handy:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> for block in s.get_matching_blocks():
|
||||
... print "a[%d] and b[%d] match for %d elements" % block
|
||||
a[0] and b[0] match for 8 elements
|
||||
a[8] and b[17] match for 6 elements
|
||||
a[14] and b[23] match for 15 elements
|
||||
a[29] and b[38] match for 0 elements
|
||||
\end{verbatim}
|
||||
|
||||
Note that the last tuple returned by \method{get_matching_blocks()} is
|
||||
always a dummy, \code{(len(\var{a}), len(\var{b}), 0)}, and this is
|
||||
the only case in which the last tuple element (number of elements
|
||||
matched) is \code{0}.
|
||||
|
||||
If you want to know how to change the first sequence into the second,
|
||||
use \method{get_opcodes()}:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> for opcode in s.get_opcodes():
|
||||
... print "%6s a[%d:%d] b[%d:%d]" % opcode
|
||||
equal a[0:8] b[0:8]
|
||||
insert a[8:8] b[8:17]
|
||||
equal a[8:14] b[17:23]
|
||||
equal a[14:29] b[23:38]
|
||||
\end{verbatim}
|
||||
|
||||
See \file{Tools/scripts/ndiff.py} from the Python source distribution
|
||||
for a fancy human-friendly file differencer, which uses
|
||||
\class{SequenceMatcher} both to view files as sequences of lines, and
|
||||
lines as sequences of characters.
|
||||
|
||||
See also the function \function{get_close_matches()} in this module,
|
||||
which shows how simple code building on \class{SequenceMatcher} can be
|
||||
used to do useful work.
|
Loading…
Reference in New Issue