At Guido's suggestion, here's a new C API function, PyObject_Dir(), like

__builtin__.dir().  Moved the guts from bltinmodule.c to object.c.
This commit is contained in:
Tim Peters 2001-09-04 22:08:56 +00:00
parent 2f760c35e2
commit 7eea37e831
5 changed files with 167 additions and 138 deletions

View File

@ -1720,6 +1720,16 @@ must return an integer or long integer, which is returned as the file
descriptor value. Returns \code{-1} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyObject_Dir}{PyObject *o}
This is equivalent to the Python expression \samp{dir(\var{o})},
returning a (possibly empty) list of strings appropriate for the
object argument, or \NULL{} in case of error.
If the argument is \NULL{}, this is like the Python \samp{dir()},
returning the names of the current locals; in this case, if no
execution frame is active then \NULL{} is returned but
\cfunction{PyErr_Occurred()} will return false.
\end{cfuncdesc}
\section{Number Protocol \label{number}}

View File

@ -346,6 +346,14 @@ extern DL_IMPORT(int) PyNumber_CoerceEx(PyObject **, PyObject **);
extern DL_IMPORT(void) (*PyObject_ClearWeakRefs)(PyObject *);
/* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
list of strings. PyObject_Dir(NULL) is like __builtin__.dir(),
returning the names of the current locals. In this case, if there are
no current locals, NULL is returned, and PyErr_Occurred() is false.
*/
extern DL_IMPORT(PyObject *) PyObject_Dir(PyObject *);
/* Helpers for printing recursive container types */
extern DL_IMPORT(int) Py_ReprEnter(PyObject *);
extern DL_IMPORT(void) Py_ReprLeave(PyObject *);

View File

@ -96,7 +96,9 @@ Tools
Build
API
C API
- New function PyObject_Dir(obj), like Python __builtin__.dir(obj).
- Note that PyLong_AsDouble can fail! This has always been true, but no
callers checked for it. It's more likely to fail now, because overflow

View File

@ -1357,6 +1357,151 @@ PyCallable_Check(PyObject *x)
}
}
/* Helper for PyObject_Dir.
Merge the __dict__ of aclass into dict, and recursively also all
the __dict__s of aclass's base classes. The order of merging isn't
defined, as it's expected that only the final set of dict keys is
interesting.
Return 0 on success, -1 on error.
*/
static int
merge_class_dict(PyObject* dict, PyObject* aclass)
{
PyObject *classdict;
PyObject *bases;
assert(PyDict_Check(dict));
assert(aclass);
/* Merge in the type's dict (if any). */
classdict = PyObject_GetAttrString(aclass, "__dict__");
if (classdict == NULL)
PyErr_Clear();
else {
int status = PyDict_Update(dict, classdict);
Py_DECREF(classdict);
if (status < 0)
return -1;
}
/* Recursively merge in the base types' (if any) dicts. */
bases = PyObject_GetAttrString(aclass, "__bases__");
if (bases != NULL) {
int i, n;
assert(PyTuple_Check(bases));
n = PyTuple_GET_SIZE(bases);
for (i = 0; i < n; i++) {
PyObject *base = PyTuple_GET_ITEM(bases, i);
if (merge_class_dict(dict, base) < 0) {
Py_DECREF(bases);
return -1;
}
}
Py_DECREF(bases);
}
return 0;
}
/* Like __builtin__.dir(arg). See bltinmodule.c's builtin_dir for the
docstring, which should be kept in synch with this implementation. */
PyObject *
PyObject_Dir(PyObject *arg)
{
/* Set exactly one of these non-NULL before the end. */
PyObject *result = NULL; /* result list */
PyObject *masterdict = NULL; /* result is masterdict.keys() */
/* If NULL arg, return the locals. */
if (arg == NULL) {
PyObject *locals = PyEval_GetLocals();
if (locals == NULL)
goto error;
result = PyDict_Keys(locals);
if (result == NULL)
goto error;
}
/* Elif this is some form of module, we only want its dict. */
else if (PyObject_TypeCheck(arg, &PyModule_Type)) {
masterdict = PyObject_GetAttrString(arg, "__dict__");
if (masterdict == NULL)
goto error;
assert(PyDict_Check(masterdict));
}
/* Elif some form of type or class, grab its dict and its bases.
We deliberately don't suck up its __class__, as methods belonging
to the metaclass would probably be more confusing than helpful. */
else if (PyType_Check(arg) || PyClass_Check(arg)) {
masterdict = PyDict_New();
if (masterdict == NULL)
goto error;
if (merge_class_dict(masterdict, arg) < 0)
goto error;
}
/* Else look at its dict, and the attrs reachable from its class. */
else {
PyObject *itsclass;
/* Create a dict to start with. CAUTION: Not everything
responding to __dict__ returns a dict! */
masterdict = PyObject_GetAttrString(arg, "__dict__");
if (masterdict == NULL) {
PyErr_Clear();
masterdict = PyDict_New();
}
else if (!PyDict_Check(masterdict)) {
Py_DECREF(masterdict);
masterdict = PyDict_New();
}
else {
/* The object may have returned a reference to its
dict, so copy it to avoid mutating it. */
PyObject *temp = PyDict_Copy(masterdict);
Py_DECREF(masterdict);
masterdict = temp;
}
if (masterdict == NULL)
goto error;
/* Merge in attrs reachable from its class.
CAUTION: Not all objects have a __class__ attr. */
itsclass = PyObject_GetAttrString(arg, "__class__");
if (itsclass == NULL)
PyErr_Clear();
else {
int status = merge_class_dict(masterdict, itsclass);
Py_DECREF(itsclass);
if (status < 0)
goto error;
}
}
assert((result == NULL) ^ (masterdict == NULL));
if (masterdict != NULL) {
/* The result comes from its keys. */
assert(result == NULL);
result = PyDict_Keys(masterdict);
if (result == NULL)
goto error;
}
assert(result);
if (PyList_Sort(result) != 0)
goto error;
else
goto normal_return;
error:
Py_XDECREF(result);
result = NULL;
/* fall through */
normal_return:
Py_XDECREF(masterdict);
return result;
}
/*
NoObject is usable as a non-NULL undefined value, used by the macro None.

View File

@ -426,150 +426,14 @@ the effects of any future statements in effect in the code calling\n\
compile; if absent or zero these statements do influence the compilation,\n\
in addition to any features explicitly specified.";
/* Merge the __dict__ of aclass into dict, and recursively also all
the __dict__s of aclass's base classes. The order of merging isn't
defined, as it's expected that only the final set of dict keys is
interesting.
Return 0 on success, -1 on error.
*/
static int
merge_class_dict(PyObject* dict, PyObject* aclass)
{
PyObject *classdict;
PyObject *bases;
assert(PyDict_Check(dict));
assert(aclass);
/* Merge in the type's dict (if any). */
classdict = PyObject_GetAttrString(aclass, "__dict__");
if (classdict == NULL)
PyErr_Clear();
else {
int status = PyDict_Update(dict, classdict);
Py_DECREF(classdict);
if (status < 0)
return -1;
}
/* Recursively merge in the base types' (if any) dicts. */
bases = PyObject_GetAttrString(aclass, "__bases__");
if (bases != NULL) {
int i, n;
assert(PyTuple_Check(bases));
n = PyTuple_GET_SIZE(bases);
for (i = 0; i < n; i++) {
PyObject *base = PyTuple_GET_ITEM(bases, i);
if (merge_class_dict(dict, base) < 0) {
Py_DECREF(bases);
return -1;
}
}
Py_DECREF(bases);
}
return 0;
}
static PyObject *
builtin_dir(PyObject *self, PyObject *args)
{
PyObject *arg = NULL;
/* Set exactly one of these non-NULL before the end. */
PyObject *result = NULL; /* result list */
PyObject *masterdict = NULL; /* result is masterdict.keys() */
if (!PyArg_ParseTuple(args, "|O:dir", &arg))
return NULL;
/* If no arg, return the locals. */
if (arg == NULL) {
PyObject *locals = PyEval_GetLocals();
if (locals == NULL)
goto error;
result = PyDict_Keys(locals);
if (result == NULL)
goto error;
}
/* Elif this is some form of module, we only want its dict. */
else if (PyObject_TypeCheck(arg, &PyModule_Type)) {
masterdict = PyObject_GetAttrString(arg, "__dict__");
if (masterdict == NULL)
goto error;
assert(PyDict_Check(masterdict));
}
/* Elif some form of type or class, grab its dict and its bases.
We deliberately don't suck up its __class__, as methods belonging
to the metaclass would probably be more confusing than helpful. */
else if (PyType_Check(arg) || PyClass_Check(arg)) {
masterdict = PyDict_New();
if (masterdict == NULL)
goto error;
if (merge_class_dict(masterdict, arg) < 0)
goto error;
}
/* Else look at its dict, and the attrs reachable from its class. */
else {
PyObject *itsclass;
/* Create a dict to start with. CAUTION: Not everything
responding to __dict__ returns a dict! */
masterdict = PyObject_GetAttrString(arg, "__dict__");
if (masterdict == NULL) {
PyErr_Clear();
masterdict = PyDict_New();
}
else if (!PyDict_Check(masterdict)) {
Py_DECREF(masterdict);
masterdict = PyDict_New();
}
else {
/* The object may have returned a reference to its
dict, so copy it to avoid mutating it. */
PyObject *temp = PyDict_Copy(masterdict);
Py_DECREF(masterdict);
masterdict = temp;
}
if (masterdict == NULL)
goto error;
/* Merge in attrs reachable from its class.
CAUTION: Not all objects have a __class__ attr. */
itsclass = PyObject_GetAttrString(arg, "__class__");
if (itsclass == NULL)
PyErr_Clear();
else {
int status = merge_class_dict(masterdict, itsclass);
Py_DECREF(itsclass);
if (status < 0)
goto error;
}
}
assert((result == NULL) ^ (masterdict == NULL));
if (masterdict != NULL) {
/* The result comes from its keys. */
assert(result == NULL);
result = PyDict_Keys(masterdict);
if (result == NULL)
goto error;
}
assert(result);
if (PyList_Sort(result) != 0)
goto error;
else
goto normal_return;
error:
Py_XDECREF(result);
result = NULL;
/* fall through */
normal_return:
Py_XDECREF(masterdict);
return result;
return PyObject_Dir(arg);
}
static char dir_doc[] =