From 3176bb1df2a81f2e0afb32eda47cf9c416fa7557 Mon Sep 17 00:00:00 2001 From: Guido van Rossum Date: Wed, 11 Dec 1996 23:57:39 +0000 Subject: [PATCH] Some more tuning of quicksort: use pointers instead of indexing. --- Objects/listobject.c | 114 +++++++++++++++++++++++-------------------- 1 file changed, 60 insertions(+), 54 deletions(-) diff --git a/Objects/listobject.c b/Objects/listobject.c index 33ebe812097..a985aa33ce4 100644 --- a/Objects/listobject.c +++ b/Objects/listobject.c @@ -609,19 +609,20 @@ insertionsort(array, size, compare) object *compare;/* Comparison function object, or NULL for default */ { register object **a = array; - register int i; + register object **end = array+size; + register object **p; - for (i = 1; i < size; i++) { - register object *key = a[i]; - register int j = i; - while (--j >= 0) { - register int k = docompare(a[j], key, compare); + for (p = a+1; p < end; p++) { + register object *key = *p; + register object **q = p; + while (--q >= a) { + register int k = docompare(*q, key, compare); if (k == CMPERROR) return -1; if (k <= 0) break; - a[j+1] = a[j]; - a[j] = key; /* For consistency */ + *(q+1) = *q; + *q = key; /* For consistency */ } } @@ -629,7 +630,9 @@ insertionsort(array, size, compare) } /* MINSIZE is the smallest array we care to partition; smaller arrays - are sorted using a straight insertion sort (above). */ + are sorted using a straight insertion sort (above). You may want + to play with this to tune it for your system. It must be at least + 2; more than 20 probably doesn't make sense. */ #define MINSIZE 10 /* STACKSIZE is the size of our work stack. A rough estimate is that @@ -649,64 +652,66 @@ quicksort(array, size, compare) int size; /* Number of elements to sort */ object *compare;/* Comparison function object, or NULL for default */ { - register object **a, *tmp, *pivot; - register int n, l, r, k; - int top, i, j, n2; - object **astack[STACKSIZE]; - int nstack[STACKSIZE]; + register object *tmp, *pivot; + register object **lo, **hi, **l, **r; + int top, k, n, n2; + object **lostack[STACKSIZE]; + object **histack[STACKSIZE]; /* Start out with the whole array on the work stack */ - astack[0] = array; - nstack[0] = size; + lostack[0] = array; + histack[0] = array+size; top = 1; /* Repeat until the work stack is empty */ while (--top >= 0) { - a = astack[top]; - n = nstack[top]; + lo = lostack[top]; + hi = histack[top]; /* If it's a small one, use straight insertion sort */ + n = hi - lo; if (n < MINSIZE) { - if (insertionsort(a, n, compare) < 0) + if (insertionsort(lo, n, compare) < 0) return -1; continue; } - /* Choose median of a[0], a[n/2], a[n-1] as pivot */ - i = n>>1; - j = n-1; - k = docompare(a[0], a[i], compare); + /* Choose median of first, middle and last item as pivot */ + + l = lo + (n>>1); /* Middle */ + r = hi - 1; /* Last */ + k = docompare(*lo, *l, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = a[0]; a[0] = a[i]; a[i] = tmp; } - k = docompare(a[j], a[i], compare); + { tmp = *lo; *lo = *l; *l = tmp; } + k = docompare(*r, *l, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = a[j]; a[j] = a[i]; a[i] = tmp; } - k = docompare(a[j], a[0], compare); + { tmp = *r; *r = *l; *l = tmp; } + k = docompare(*r, *lo, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = a[j]; a[j] = a[0]; a[0] = tmp; } - pivot = a[0]; + { tmp = *r; *r = *lo; *lo = tmp; } + pivot = *lo; /* Partition the array */ - l = 0; - r = n; + l = lo; + r = hi; for (;;) { /* Move left index to element > pivot */ - while (++l < n) { - k = docompare(a[l], pivot, compare); + while (++l < hi) { + k = docompare(*l, pivot, compare); if (k == CMPERROR) return -1; if (k > 0) break; } /* Move right index to element < pivot */ - while (--r > 0) { - k = docompare(a[r], pivot, compare); + while (--r > lo) { + k = docompare(*r, pivot, compare); if (k == CMPERROR) return -1; if (k < 0) @@ -716,40 +721,41 @@ quicksort(array, size, compare) if (r < l) break; /* Swap elements and continue */ - { tmp = a[l]; a[l] = a[r]; a[r] = tmp; } + { tmp = *l; *l = *r; *r = tmp; } } /* Move the pivot into the middle */ - { tmp = a[0]; a[0] = a[r]; a[r] = tmp; } + { tmp = *lo; *lo = *r; *r = tmp; } /* We have now reached the following conditions: - 0 <= r < l <= n - all x in a[0:r] are <= pivot - all x in a[r:l] are == pivot - all x in a[l:n] are >= pivot - The partitions are a[0:r] and a[l:n] + lo <= r < l <= hi + all x in [lo,r) are <= pivot + all x in [r,l) are == pivot + all x in [l,hi) are >= pivot + The partitions are [lo,r) and [l,hi) */ /* Push biggest partition first */ - n2 = n - l; - if (r > n2) { + n = r - lo; + n2 = hi - l; + if (n > n2) { /* First one is bigger */ - if (r > 1) { - astack[top] = a; - nstack[top++] = r; + if (n > 1) { + lostack[top] = lo; + histack[top++] = r; if (n2 > 1) { - astack[top] = a+l; - nstack[top++] = n2; + lostack[top] = l; + histack[top++] = hi; } } } else { /* Second one is bigger */ if (n2 > 1) { - astack[top] = a+l; - nstack[top++] = n2; - if (r > 1) { - astack[top] = a; - nstack[top++] = r; + lostack[top] = l; + histack[top++] = hi; + if (n > 1) { + lostack[top] = lo; + histack[top++] = r; } } }