This division test was too stringent in its accuracy expectations for

random inputs:  if you ran the test 100 times, you could expect it to
report a bogus failure.  So loosened its expectations.
Also changed the way failing tests are printed, so that when run under
regrtest.py we get enough info to reproduce the failure.
This commit is contained in:
Tim Peters 2001-05-29 22:18:09 +00:00
parent 9a828d3c61
commit 0b76d3a8d1
1 changed files with 4 additions and 4 deletions

View File

@ -5,7 +5,7 @@
nerrors = 0
def check_close_real(x, y, eps=1e-12):
def check_close_real(x, y, eps=1e-9):
"""Return true iff floats x and y "are close\""""
# put the one with larger magnitude second
if abs(x) > abs(y):
@ -17,7 +17,7 @@ def check_close_real(x, y, eps=1e-12):
# check that relative difference < eps
return abs((x-y)/y) < eps
def check_close(x, y, eps=1e-12):
def check_close(x, y, eps=1e-9):
"""Return true iff complexes x and y "are close\""""
return check_close_real(x.real, y.real, eps) and \
check_close_real(x.imag, y.imag, eps)
@ -30,12 +30,12 @@ def test_div(x, y):
q = z / x
if not check_close(q, y):
nerrors += 1
print `z`, "/", `x`, "==", `q`, "but expected", `y`
print "%r / %r == %r but expected %r" % (z, x, q, y)
if y != 0:
q = z / y
if not check_close(q, x):
nerrors += 1
print `z`, "/", `y`, "==", `q`, "but expected", `x`
print "%r / %r == %r but expected %r" % (z, y, q, x)
simple_real = [float(i) for i in range(-5, 6)]
simple_complex = [complex(x, y) for x in simple_real for y in simple_real]