cpython/Demo/metaclasses/Synch.py

256 lines
7.7 KiB
Python
Raw Normal View History

1997-08-26 00:08:51 +00:00
"""Synchronization metaclass.
This metaclass makes it possible to declare synchronized methods.
"""
import thread
# First we need to define a reentrant lock.
# This is generally useful and should probably be in a standard Python
# library module. For now, we in-line it.
class Lock:
"""Reentrant lock.
This is a mutex-like object which can be acquired by the same
thread more than once. It keeps a reference count of the number
of times it has been acquired by the same thread. Each acquire()
call must be matched by a release() call and only the last
release() call actually releases the lock for acquisition by
another thread.
The implementation uses two locks internally:
__mutex is a short term lock used to protect the instance variables
__wait is the lock for which other threads wait
A thread intending to acquire both locks should acquire __wait
first.
The implementation uses two other instance variables, protected by
locking __mutex:
__tid is the thread ID of the thread that currently has the lock
__count is the number of times the current thread has acquired it
When the lock is released, __tid is None and __count is zero.
"""
def __init__(self):
1998-09-14 16:44:15 +00:00
"""Constructor. Initialize all instance variables."""
self.__mutex = thread.allocate_lock()
self.__wait = thread.allocate_lock()
self.__tid = None
self.__count = 0
1997-08-26 00:08:51 +00:00
def acquire(self, flag=1):
1998-09-14 16:44:15 +00:00
"""Acquire the lock.
If the optional flag argument is false, returns immediately
when it cannot acquire the __wait lock without blocking (it
may still block for a little while in order to acquire the
__mutex lock).
The return value is only relevant when the flag argument is
false; it is 1 if the lock is acquired, 0 if not.
"""
self.__mutex.acquire()
try:
if self.__tid == thread.get_ident():
self.__count = self.__count + 1
return 1
finally:
self.__mutex.release()
locked = self.__wait.acquire(flag)
if not flag and not locked:
return 0
try:
self.__mutex.acquire()
assert self.__tid == None
assert self.__count == 0
self.__tid = thread.get_ident()
self.__count = 1
return 1
finally:
self.__mutex.release()
1997-08-26 00:08:51 +00:00
def release(self):
1998-09-14 16:44:15 +00:00
"""Release the lock.
1997-08-26 00:08:51 +00:00
1998-09-14 16:44:15 +00:00
If this thread doesn't currently have the lock, an assertion
error is raised.
1997-08-26 00:08:51 +00:00
1998-09-14 16:44:15 +00:00
Only allow another thread to acquire the lock when the count
reaches zero after decrementing it.
1997-08-26 00:08:51 +00:00
1998-09-14 16:44:15 +00:00
"""
self.__mutex.acquire()
try:
assert self.__tid == thread.get_ident()
assert self.__count > 0
self.__count = self.__count - 1
if self.__count == 0:
self.__tid = None
self.__wait.release()
finally:
self.__mutex.release()
1997-08-26 00:08:51 +00:00
def _testLock():
done = []
def f2(lock, done=done):
1998-09-14 16:44:15 +00:00
lock.acquire()
print("f2 running in thread %d\n" % thread.get_ident(), end=' ')
1998-09-14 16:44:15 +00:00
lock.release()
done.append(1)
1997-08-26 00:08:51 +00:00
def f1(lock, f2=f2, done=done):
1998-09-14 16:44:15 +00:00
lock.acquire()
print("f1 running in thread %d\n" % thread.get_ident(), end=' ')
1998-09-14 16:44:15 +00:00
try:
f2(lock)
finally:
lock.release()
done.append(1)
1997-08-26 00:08:51 +00:00
lock = Lock()
lock.acquire()
1998-09-14 16:44:15 +00:00
f1(lock) # Adds 2 to done
1997-08-26 00:08:51 +00:00
lock.release()
lock.acquire()
1997-08-26 00:08:51 +00:00
thread.start_new_thread(f1, (lock,)) # Adds 2
thread.start_new_thread(f1, (lock, f1)) # Adds 3
thread.start_new_thread(f2, (lock,)) # Adds 1
thread.start_new_thread(f2, (lock,)) # Adds 1
lock.release()
import time
while len(done) < 9:
print(len(done))
1998-09-14 16:44:15 +00:00
time.sleep(0.001)
print(len(done))
1997-08-26 00:08:51 +00:00
# Now, the Locking metaclass is a piece of cake.
# As an example feature, methods whose name begins with exactly one
# underscore are not synchronized.
from Meta import MetaClass, MetaHelper, MetaMethodWrapper
class LockingMethodWrapper(MetaMethodWrapper):
def __call__(self, *args, **kw):
1998-09-14 16:44:15 +00:00
if self.__name__[:1] == '_' and self.__name__[1:] != '_':
2006-03-17 08:00:19 +00:00
return self.func(self.inst, *args, **kw)
1998-09-14 16:44:15 +00:00
self.inst.__lock__.acquire()
try:
2006-03-17 08:00:19 +00:00
return self.func(self.inst, *args, **kw)
1998-09-14 16:44:15 +00:00
finally:
self.inst.__lock__.release()
1997-08-26 00:08:51 +00:00
class LockingHelper(MetaHelper):
__methodwrapper__ = LockingMethodWrapper
def __helperinit__(self, formalclass):
1998-09-14 16:44:15 +00:00
MetaHelper.__helperinit__(self, formalclass)
self.__lock__ = Lock()
1997-08-26 00:08:51 +00:00
class LockingMetaClass(MetaClass):
__helper__ = LockingHelper
Locking = LockingMetaClass('Locking', (), {})
def _test():
# For kicks, take away the Locking base class and see it die
class Buffer(Locking):
1998-09-14 16:44:15 +00:00
def __init__(self, initialsize):
assert initialsize > 0
self.size = initialsize
self.buffer = [None]*self.size
self.first = self.last = 0
def put(self, item):
# Do we need to grow the buffer?
if (self.last+1) % self.size != self.first:
# Insert the new item
self.buffer[self.last] = item
self.last = (self.last+1) % self.size
return
# Double the buffer size
# First normalize it so that first==0 and last==size-1
print("buffer =", self.buffer)
print("first = %d, last = %d, size = %d" % (
self.first, self.last, self.size))
1998-09-14 16:44:15 +00:00
if self.first <= self.last:
temp = self.buffer[self.first:self.last]
else:
temp = self.buffer[self.first:] + self.buffer[:self.last]
print("temp =", temp)
1998-09-14 16:44:15 +00:00
self.buffer = temp + [None]*(self.size+1)
self.first = 0
self.last = self.size-1
self.size = self.size*2
print("Buffer size doubled to", self.size)
print("new buffer =", self.buffer)
print("first = %d, last = %d, size = %d" % (
self.first, self.last, self.size))
1998-09-14 16:44:15 +00:00
self.put(item) # Recursive call to test the locking
def get(self):
# Is the buffer empty?
if self.first == self.last:
raise EOFError # Avoid defining a new exception
item = self.buffer[self.first]
self.first = (self.first+1) % self.size
return item
1997-08-26 00:08:51 +00:00
def producer(buffer, wait, n=1000):
1998-09-14 16:44:15 +00:00
import time
i = 0
while i < n:
print("put", i)
1998-09-14 16:44:15 +00:00
buffer.put(i)
i = i+1
print("Producer: done producing", n, "items")
1998-09-14 16:44:15 +00:00
wait.release()
1997-08-26 00:08:51 +00:00
def consumer(buffer, wait, n=1000):
1998-09-14 16:44:15 +00:00
import time
i = 0
tout = 0.001
while i < n:
try:
x = buffer.get()
if x != i:
raise AssertionError("get() returned %s, expected %s" % (x, i))
print("got", i)
1998-09-14 16:44:15 +00:00
i = i+1
tout = 0.001
except EOFError:
time.sleep(tout)
tout = tout*2
print("Consumer: done consuming", n, "items")
1998-09-14 16:44:15 +00:00
wait.release()
1997-08-26 00:08:51 +00:00
pwait = thread.allocate_lock()
pwait.acquire()
cwait = thread.allocate_lock()
cwait.acquire()
buffer = Buffer(1)
n = 1000
thread.start_new_thread(consumer, (buffer, cwait, n))
thread.start_new_thread(producer, (buffer, pwait, n))
pwait.acquire()
print("Producer done")
1997-08-26 00:08:51 +00:00
cwait.acquire()
print("All done")
print("buffer size ==", len(buffer.buffer))
1997-08-26 00:08:51 +00:00
if __name__ == '__main__':
_testLock()
_test()