1997-05-15 21:43:21 +00:00
|
|
|
\documentstyle[twoside,11pt,myformat]{report}
|
|
|
|
|
|
|
|
\title{Python-C API Reference}
|
|
|
|
|
|
|
|
\input{boilerplate}
|
|
|
|
|
|
|
|
\makeindex % tell \index to actually write the .idx file
|
|
|
|
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\pagenumbering{roman}
|
|
|
|
|
|
|
|
\maketitle
|
|
|
|
|
|
|
|
\input{copyright}
|
|
|
|
|
|
|
|
\begin{abstract}
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
This manual documents the API used by C (or C++) programmers who want
|
|
|
|
to write extension modules or embed Python. It is a companion to
|
|
|
|
``Extending and Embedding the Python Interpreter'', which describes
|
|
|
|
the general principles of extension writing but does not document the
|
|
|
|
API functions in detail.
|
|
|
|
|
|
|
|
\end{abstract}
|
|
|
|
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
{
|
|
|
|
\parskip = 0mm
|
|
|
|
\tableofcontents
|
|
|
|
}
|
|
|
|
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
\pagenumbering{arabic}
|
|
|
|
|
|
|
|
|
|
|
|
\chapter{Introduction}
|
|
|
|
|
1997-08-14 20:34:33 +00:00
|
|
|
The Application Programmer's Interface to Python gives C and C++
|
|
|
|
programmers access to the Python interpreter at a variety of levels.
|
1997-08-14 20:35:38 +00:00
|
|
|
There are two fundamentally different reasons for using the Python/C
|
|
|
|
API. (The API is equally usable from C++, but for brevity it is
|
|
|
|
generally referred to as the Python/C API.) The first reason is to
|
|
|
|
write ``extension modules'' for specific purposes; these are C modules
|
|
|
|
that extend the Python interpreter. This is probably the most common
|
|
|
|
use. The second reason is to use Python as a component in a larger
|
|
|
|
application; this technique is generally referred to as ``embedding''
|
1997-08-14 20:34:33 +00:00
|
|
|
Python in an application.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
Writing an extension module is a relatively well-understood process,
|
|
|
|
where a ``cookbook'' approach works well. There are several tools
|
|
|
|
that automate the process to some extent. While people have embedded
|
|
|
|
Python in other applications since its early existence, the process of
|
|
|
|
embedding Python is less straightforward that writing an extension.
|
|
|
|
Python 1.5 introduces a number of new API functions as well as some
|
|
|
|
changes to the build process that make embedding much simpler.
|
1997-08-14 20:34:33 +00:00
|
|
|
This manual describes the 1.5 state of affair (as of Python 1.5a3).
|
|
|
|
% XXX Eventually, take the historical notes out
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
Many API functions are useful independent of whether you're embedding
|
|
|
|
or extending Python; moreover, most applications that embed Python
|
|
|
|
will need to provide a custom extension as well, so it's probably a
|
|
|
|
good idea to become familiar with writing an extension before
|
1997-08-14 20:34:33 +00:00
|
|
|
attempting to embed Python in a real application.
|
|
|
|
|
|
|
|
\section{Objects, Types and Reference Counts}
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
Most Python/C API functions have one or more arguments as well as a
|
|
|
|
return value of type \code{PyObject *}. This type is a pointer
|
|
|
|
(obviously!) to an opaque data type representing an arbitrary Python
|
|
|
|
object. Since all Python object types are treated the same way by the
|
|
|
|
Python language in most situations (e.g., assignments, scope rules,
|
|
|
|
and argument passing), it is only fitting that they should be
|
1997-08-14 20:34:33 +00:00
|
|
|
represented by a single C type. All Python objects live on the heap:
|
1997-08-14 20:35:38 +00:00
|
|
|
you never declare an automatic or static variable of type
|
|
|
|
\code{PyObject}, only pointer variables of type \code{PyObject *} can
|
1997-08-14 20:34:33 +00:00
|
|
|
be declared.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
All Python objects (even Python integers) have a ``type'' and a
|
|
|
|
``reference count''. An object's type determines what kind of object
|
|
|
|
it is (e.g., an integer, a list, or a user-defined function; there are
|
|
|
|
many more as explained in the Python Language Reference Manual). For
|
|
|
|
each of the well-known types there is a macro to check whether an
|
|
|
|
object is of that type; for instance, \code{PyList_Check(a)} is true
|
1997-08-14 20:34:33 +00:00
|
|
|
iff the object pointed to by \code{a} is a Python list.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
The reference count is important only because today's computers have a
|
|
|
|
finite (and often severly limited) memory size; it counts how many
|
|
|
|
different places there are that have a reference to an object. Such a
|
|
|
|
place could be another object, or a global (or static) C variable, or
|
|
|
|
a local variable in some C function. When an object's reference count
|
|
|
|
becomes zero, the object is deallocated. If it contains references to
|
|
|
|
other objects, their reference count is decremented. Those other
|
|
|
|
objects may be deallocated in turn, if this decrement makes their
|
|
|
|
reference count become zero, and so on. (There's an obvious problem
|
|
|
|
with objects that reference each other here; for now, the solution is
|
1997-08-14 20:34:33 +00:00
|
|
|
``don't do that''.)
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
Reference counts are always manipulated explicitly. The normal way is
|
|
|
|
to use the macro \code{Py_INCREF(a)} to increment an object's
|
|
|
|
reference count by one, and \code{Py_DECREF(a)} to decrement it by
|
|
|
|
one. The latter macro is considerably more complex than the former,
|
|
|
|
since it must check whether the reference count becomes zero and then
|
|
|
|
cause the object's deallocator, which is a function pointer contained
|
|
|
|
in the object's type structure. The type-specific deallocator takes
|
|
|
|
care of decrementing the reference counts for other objects contained
|
|
|
|
in the object, and so on, if this is a compound object type such as a
|
|
|
|
list. There's no chance that the reference count can overflow; at
|
|
|
|
least as many bits are used to hold the reference count as there are
|
|
|
|
distinct memory locations in virtual memory (assuming
|
|
|
|
\code{sizeof(long) >= sizeof(char *)}). Thus, the reference count
|
1997-08-14 20:34:33 +00:00
|
|
|
increment is a simple operation.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
It is not necessary to increment an object's reference count for every
|
|
|
|
local variable that contains a pointer to an object. In theory, the
|
|
|
|
oject's reference count goes up by one when the variable is made to
|
|
|
|
point to it and it goes down by one when the variable goes out of
|
|
|
|
scope. However, these two cancel each other out, so at the end the
|
|
|
|
reference count hasn't changed. The only real reason to use the
|
|
|
|
reference count is to prevent the object from being deallocated as
|
|
|
|
long as our variable is pointing to it. If we know that there is at
|
|
|
|
least one other reference to the object that lives at least as long as
|
|
|
|
our variable, there is no need to increment the reference count
|
|
|
|
temporarily. An important situation where this arises is in objects
|
|
|
|
that are passed as arguments to C functions in an extension module
|
|
|
|
that are called from Python; the call mechanism guarantees to hold a
|
1997-08-14 20:34:33 +00:00
|
|
|
reference to every argument for the duration of the call.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
However, a common pitfall is to extract an object from a list and
|
|
|
|
holding on to it for a while without incrementing its reference count.
|
|
|
|
Some other operation might conceivably remove the object from the
|
|
|
|
list, decrementing its reference count and possible deallocating it.
|
|
|
|
The real danger is that innocent-looking operations may invoke
|
|
|
|
arbitrary Python code which could do this; there is a code path which
|
|
|
|
allows control to flow back to the user from a \code{Py_DECREF()}, so
|
1997-08-14 20:34:33 +00:00
|
|
|
almost any operation is potentially dangerous.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
A safe approach is to always use the generic operations (functions
|
|
|
|
whose name begins with \code{PyObject_}, \code{PyNumber_},
|
|
|
|
\code{PySequence_} or \code{PyMapping_}). These operations always
|
|
|
|
increment the reference count of the object they return. This leaves
|
|
|
|
the caller with the responsibility to call \code{Py_DECREF()} when
|
1997-08-14 20:34:33 +00:00
|
|
|
they are done with the result; this soon becomes second nature.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
There are very few other data types that play a significant role in
|
|
|
|
the Python/C API; most are all simple C types such as \code{int},
|
|
|
|
\code{long}, \code{double} and \code{char *}. A few structure types
|
|
|
|
are used to describe static tables used to list the functions exported
|
|
|
|
by a module or the data attributes of a new object type. These will
|
1997-08-14 20:34:33 +00:00
|
|
|
be discussed together with the functions that use them.
|
|
|
|
|
|
|
|
\section{Exceptions}
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
The Python programmer only needs to deal with exceptions if specific
|
|
|
|
error handling is required; unhandled exceptions are automatically
|
|
|
|
propagated to the caller, then to the caller's caller, and so on, till
|
|
|
|
they reach the top-level interpreter, where they are reported to the
|
1997-08-14 20:34:33 +00:00
|
|
|
user accompanied by a stack trace.
|
|
|
|
|
|
|
|
For C programmers, however, error checking always has to be explicit.
|
|
|
|
% XXX add more stuff here
|
|
|
|
|
|
|
|
\section{Embedding Python}
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
The one important task that only embedders of the Python interpreter
|
|
|
|
have to worry about is the initialization (and possibly the
|
|
|
|
finalization) of the Python interpreter. Most functionality of the
|
|
|
|
interpreter can only be used after the interpreter has been
|
1997-08-14 20:34:33 +00:00
|
|
|
initialized.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
The basic initialization function is \code{Py_Initialize()}. This
|
|
|
|
initializes the table of loaded modules, and creates the fundamental
|
|
|
|
modules \code{__builtin__}, \code{__main__} and \code{sys}. It also
|
1997-08-14 20:34:33 +00:00
|
|
|
initializes the module search path (\code{sys.path}).
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
\code{Py_Initialize()} does not set the ``script argument list''
|
|
|
|
(\code{sys.argv}). If this variable is needed by Python code that
|
|
|
|
will be executed later, it must be set explicitly with a call to
|
|
|
|
\code{PySys_SetArgv(\var{argc}, \var{argv})} subsequent to the call
|
1997-08-14 20:34:33 +00:00
|
|
|
to \code{Py_Initialize()}.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
On Unix, \code{Py_Initialize()} calculates the module search path
|
|
|
|
based upon its best guess for the location of the standard Python
|
|
|
|
interpreter executable, assuming that the Python library is found in a
|
|
|
|
fixed location relative to the Python interpreter executable. In
|
|
|
|
particular, it looks for a directory named \code{lib/python1.5}
|
|
|
|
(replacing \code{1.5} with the current interpreter version) relative
|
|
|
|
to the parent directory where the executable named \code{python} is
|
|
|
|
found on the shell command search path (the environment variable
|
1997-08-15 18:57:32 +00:00
|
|
|
\code{\$PATH}). For instance, if the Python executable is found in
|
1997-08-14 20:35:38 +00:00
|
|
|
\code{/usr/local/bin/python}, it will assume that the libraries are in
|
|
|
|
\code{/usr/local/lib/python1.5}. In fact, this also the ``fallback''
|
|
|
|
location, used when no executable file named \code{python} is found
|
|
|
|
along \code{\$PATH}. The user can change this behavior by setting the
|
|
|
|
environment variable \code{\$PYTHONHOME}, and can insert additional
|
|
|
|
directories in front of the standard path by setting
|
1997-08-14 20:34:33 +00:00
|
|
|
\code{\$PYTHONPATH}.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
The embedding application can steer the search by calling
|
|
|
|
\code{Py_SetProgramName(\var{file})} \emph{before} calling
|
1997-08-15 18:57:32 +00:00
|
|
|
\code{Py_Initialize()}. Note that \code{\$PYTHONHOME} still overrides
|
1997-08-14 20:35:38 +00:00
|
|
|
this and \code{\$PYTHONPATH} is still inserted in front of the
|
1997-08-14 20:34:33 +00:00
|
|
|
standard path.
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
Sometimes, it is desirable to ``uninitialize'' Python. For instance,
|
|
|
|
the application may want to start over (make another call to
|
|
|
|
\code{Py_Initialize()}) or the application is simply done with its
|
|
|
|
use of Python and wants to free all memory allocated by Python. This
|
1997-08-14 20:34:33 +00:00
|
|
|
can be accomplished by calling \code{Py_Finalize()}.
|
|
|
|
% XXX More...
|
|
|
|
|
|
|
|
\section{Embedding Python in Threaded Applications}
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1997-08-14 20:34:33 +00:00
|
|
|
|
|
|
|
\chapter{Old Introduction}
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
(XXX This is the old introduction, mostly by Jim Fulton -- should be
|
|
|
|
rewritten.)
|
|
|
|
|
1997-05-15 21:43:21 +00:00
|
|
|
From the viewpoint of of C access to Python services, we have:
|
|
|
|
|
|
|
|
\begin{enumerate}
|
|
|
|
|
|
|
|
\item "Very high level layer": two or three functions that let you
|
|
|
|
exec or eval arbitrary Python code given as a string in a module whose
|
|
|
|
name is given, passing C values in and getting C values out using
|
|
|
|
mkvalue/getargs style format strings. This does not require the user
|
|
|
|
to declare any variables of type \code{PyObject *}. This should be
|
|
|
|
enough to write a simple application that gets Python code from the
|
|
|
|
user, execs it, and returns the output or errors.
|
|
|
|
|
|
|
|
\item "Abstract objects layer": which is the subject of this chapter.
|
1997-08-14 20:34:33 +00:00
|
|
|
It has many functions operating on objects, and lets you do many
|
1997-05-15 21:43:21 +00:00
|
|
|
things from C that you can also write in Python, without going through
|
|
|
|
the Python parser.
|
|
|
|
|
|
|
|
\item "Concrete objects layer": This is the public type-dependent
|
|
|
|
interface provided by the standard built-in types, such as floats,
|
|
|
|
strings, and lists. This interface exists and is currently documented
|
|
|
|
by the collection of include files provides with the Python
|
|
|
|
distributions.
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\end{enumerate}
|
1997-05-15 21:43:21 +00:00
|
|
|
|
|
|
|
From the point of view of Python accessing services provided by C
|
|
|
|
modules:
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\begin{enumerate}
|
1997-05-15 21:43:21 +00:00
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\item[4.] "Python module interface": this interface consist of the basic
|
1997-05-15 21:43:21 +00:00
|
|
|
routines used to define modules and their members. Most of the
|
|
|
|
current extensions-writing guide deals with this interface.
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\item[5.] "Built-in object interface": this is the interface that a new
|
1997-05-15 21:43:21 +00:00
|
|
|
built-in type must provide and the mechanisms and rules that a
|
|
|
|
developer of a new built-in type must use and follow.
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
The Python C API provides four groups of operations on objects,
|
|
|
|
corresponding to the same operations in the Python language: object,
|
|
|
|
numeric, sequence, and mapping. Each protocol consists of a
|
|
|
|
collection of related operations. If an operation that is not
|
|
|
|
provided by a particular type is invoked, then the standard exception
|
|
|
|
\code{TypeError} is raised with a operation name as an argument.
|
|
|
|
|
|
|
|
In addition, for convenience this interface defines a set of
|
|
|
|
constructors for building objects of built-in types. This is needed
|
|
|
|
so new objects can be returned from C functions that otherwise treat
|
|
|
|
objects generically.
|
|
|
|
|
|
|
|
\section{Reference Counting}
|
|
|
|
|
|
|
|
For most of the functions in the Python-C API, if a function retains a
|
|
|
|
reference to a Python object passed as an argument, then the function
|
|
|
|
will increase the reference count of the object. It is unnecessary
|
|
|
|
for the caller to increase the reference count of an argument in
|
|
|
|
anticipation of the object's retention.
|
|
|
|
|
|
|
|
Usually, Python objects returned from functions should be treated as
|
|
|
|
new objects. Functions that return objects assume that the caller
|
|
|
|
will retain a reference and the reference count of the object has
|
|
|
|
already been incremented to account for this fact. A caller that does
|
|
|
|
not retain a reference to an object that is returned from a function
|
|
|
|
must decrement the reference count of the object (using
|
|
|
|
\code{Py_DECREF()}) to prevent memory leaks.
|
|
|
|
|
|
|
|
Exceptions to these rules will be noted with the individual functions.
|
|
|
|
|
|
|
|
\section{Include Files}
|
|
|
|
|
|
|
|
All function, type and macro definitions needed to use the Python-C
|
|
|
|
API are included in your code by the following line:
|
|
|
|
|
|
|
|
\code{\#include "Python.h"}
|
|
|
|
|
|
|
|
This implies inclusion of the following standard header files:
|
|
|
|
stdio.h, string.h, errno.h, and stdlib.h (if available).
|
|
|
|
|
|
|
|
All user visible names defined by Python.h (except those defined by
|
|
|
|
the included standard headers) have one of the prefixes \code{Py} or
|
|
|
|
\code{_Py}. Names beginning with \code{_Py} are for internal use
|
|
|
|
only.
|
|
|
|
|
|
|
|
|
|
|
|
\chapter{Initialization and Shutdown of an Embedded Python Interpreter}
|
|
|
|
|
|
|
|
When embedding the Python interpreter in a C or C++ program, the
|
|
|
|
interpreter must be initialized.
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyInitialize}{}
|
|
|
|
This function initializes the interpreter. It must be called before
|
|
|
|
any interaction with the interpreter takes place. If it is called
|
|
|
|
more than once, the second and further calls have no effect.
|
|
|
|
|
|
|
|
The function performs the following tasks: create an environment in
|
|
|
|
which modules can be imported and Python code can be executed;
|
|
|
|
initialize the \code{__builtin__} module; initialize the \code{sys}
|
|
|
|
module; initialize \code{sys.path}; initialize signal handling; and
|
|
|
|
create the empty \code{__main__} module.
|
|
|
|
|
|
|
|
In the current system, there is no way to undo all these
|
|
|
|
initializations or to create additional interpreter environments.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{Py_AtExit}{void (*func) ()}
|
|
|
|
Register a cleanup function to be called when Python exits. The
|
|
|
|
cleanup function will be called with no arguments and should return no
|
|
|
|
value. At most 32 cleanup functions can be registered. When the
|
|
|
|
registration is successful, \code{Py_AtExit} returns 0; on failure, it
|
|
|
|
returns -1. Each cleanup function will be called t most once. The
|
|
|
|
cleanup function registered last is called first.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_Exit}{int status}
|
|
|
|
Exit the current process. This calls \code{Py_Cleanup()} (see next
|
|
|
|
item) and performs additional cleanup (under some circumstances it
|
|
|
|
will attempt to delete all modules), and then calls the standard C
|
|
|
|
library function \code{exit(status)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_Cleanup}{}
|
|
|
|
Perform some of the cleanup that \code{Py_Exit} performs, but don't
|
|
|
|
exit the process. In particular, this invokes the user's
|
|
|
|
\code{sys.exitfunc} function (if defined at all), and it invokes the
|
|
|
|
cleanup functions registered with \code{Py_AtExit()}, in reverse order
|
|
|
|
of their registration.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_FatalError}{char *message}
|
|
|
|
Print a fatal error message and die. No cleanup is performed. This
|
|
|
|
function should only be invoked when a condition is detected that
|
|
|
|
would make it dangerous to continue using the Python interpreter;
|
|
|
|
e.g., when the object administration appears to be corrupted.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyImport_Init}{}
|
|
|
|
Initialize the module table. For internal use only.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyImport_Cleanup}{}
|
|
|
|
Empty the module table. For internal use only.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyBuiltin_Init}{}
|
|
|
|
Initialize the \code{__builtin__} module. For internal use only.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
XXX Other init functions: PyEval_InitThreads, PyOS_InitInterrupts,
|
|
|
|
PyMarshal_Init, PySys_Init.
|
1997-05-15 21:43:21 +00:00
|
|
|
|
|
|
|
\chapter{Reference Counting}
|
|
|
|
|
|
|
|
The functions in this chapter are used for managing reference counts
|
|
|
|
of Python objects.
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_INCREF}{PyObject *o}
|
|
|
|
Increment the reference count for object \code{o}. The object must
|
|
|
|
not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
|
|
|
|
\code{Py_XINCREF()}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_XINCREF}{PyObject *o}
|
|
|
|
Increment the reference count for object \code{o}. The object may be
|
|
|
|
\NULL{}, in which case the function has no effect.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_DECREF}{PyObject *o}
|
|
|
|
Decrement the reference count for object \code{o}. The object must
|
|
|
|
not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
|
|
|
|
\code{Py_XDECREF()}. If the reference count reaches zero, the object's
|
|
|
|
type's deallocation function (which must not be \NULL{}) is invoked.
|
|
|
|
|
|
|
|
\strong{Warning:} The deallocation function can cause arbitrary Python
|
|
|
|
code to be invoked (e.g. when a class instance with a \code{__del__()}
|
|
|
|
method is deallocated). While exceptions in such code are not
|
|
|
|
propagated, the executed code has free access to all Python global
|
|
|
|
variables. This means that any object that is reachable from a global
|
|
|
|
variable should be in a consistent state before \code{Py_DECREF()} is
|
|
|
|
invoked. For example, code to delete an object from a list should
|
|
|
|
copy a reference to the deleted object in a temporary variable, update
|
|
|
|
the list data structure, and then call \code{Py_DECREF()} for the
|
|
|
|
temporary variable.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_XDECREF}{PyObject *o}
|
|
|
|
Decrement the reference count for object \code{o}.The object may be
|
|
|
|
\NULL{}, in which case the function has no effect; otherwise the
|
|
|
|
effect is the same as for \code{Py_DECREF()}, and the same warning
|
|
|
|
applies.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
The following functions are only for internal use:
|
|
|
|
\code{_Py_Dealloc}, \code{_Py_ForgetReference}, \code{_Py_NewReference},
|
|
|
|
as well as the global variable \code{_Py_RefTotal}.
|
|
|
|
|
1997-05-15 21:43:21 +00:00
|
|
|
|
|
|
|
\chapter{Exception Handling}
|
|
|
|
|
|
|
|
The functions in this chapter will let you handle and raise Python
|
1997-05-22 20:11:52 +00:00
|
|
|
exceptions. It is important to understand some of the basics of
|
|
|
|
Python exception handling. It works somewhat like the Unix
|
|
|
|
\code{errno} variable: there is a global indicator (per thread) of the
|
|
|
|
last error that occurred. Most functions don't clear this on success,
|
|
|
|
but will set it to indicate the cause of the error on failure. Most
|
|
|
|
functions also return an error indicator, usually \NULL{} if they are
|
|
|
|
supposed to return a pointer, or -1 if they return an integer
|
|
|
|
(exception: the \code{PyArg_Parse*()} functions return 1 for success and
|
|
|
|
0 for failure). When a function must fail because of some function it
|
|
|
|
called failed, it generally doesn't set the error indicator; the
|
|
|
|
function it called already set it.
|
|
|
|
|
|
|
|
The error indicator consists of three Python objects corresponding to
|
|
|
|
the Python variables \code{sys.exc_type}, \code{sys.exc_value} and
|
|
|
|
\code{sys.exc_traceback}. API functions exist to interact with the
|
|
|
|
error indicator in various ways. There is a separate error indicator
|
|
|
|
for each thread.
|
|
|
|
|
|
|
|
% XXX Order of these should be more thoughtful.
|
|
|
|
% Either alphabetical or some kind of structure.
|
1997-05-15 21:43:21 +00:00
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_Print}{}
|
1997-05-22 20:11:52 +00:00
|
|
|
Print a standard traceback to \code{sys.stderr} and clear the error
|
|
|
|
indicator. Call this function only when the error indicator is set.
|
|
|
|
(Otherwise it will cause a fatal error!)
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyErr_Occurred}{}
|
|
|
|
Test whether the error indicator is set. If set, return the exception
|
|
|
|
\code{type} (the first argument to the last call to one of the
|
|
|
|
\code{PyErr_Set*()} functions or to \code{PyErr_Restore()}). If not
|
|
|
|
set, return \NULL{}. You do not own a reference to the return value,
|
|
|
|
so you do not need to \code{Py_DECREF()} it.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_Clear}{}
|
|
|
|
Clear the error indicator. If the error indicator is not set, there
|
|
|
|
is no effect.
|
1997-05-15 21:43:21 +00:00
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue, PyObject **ptraceback}
|
|
|
|
Retrieve the error indicator into three variables whose addresses are
|
|
|
|
passed. If the error indicator is not set, set all three variables to
|
|
|
|
\NULL{}. If it is set, it will be cleared and you own a reference to
|
|
|
|
each object retrieved. The value and traceback object may be \NULL{}
|
|
|
|
even when the type object is not. \strong{Note:} this function is
|
|
|
|
normally only used by code that needs to handle exceptions or by code
|
|
|
|
that needs to save and restore the error indicator temporarily.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value, PyObject *traceback}
|
|
|
|
Set the error indicator from the three objects. If the error
|
|
|
|
indicator is already set, it is cleared first. If the objects are
|
|
|
|
\NULL{}, the error indicator is cleared. Do not pass a \NULL{} type
|
|
|
|
and non-\NULL{} value or traceback. The exception type should be a
|
|
|
|
string or class; if it is a class, the value should be an instance of
|
|
|
|
that class. Do not pass an invalid exception type or value.
|
|
|
|
(Violating these rules will cause subtle problems later.) This call
|
|
|
|
takes away a reference to each object, i.e. you must own a reference
|
|
|
|
to each object before the call and after the call you no longer own
|
|
|
|
these references. (If you don't understand this, don't use this
|
|
|
|
function. I warned you.) \strong{Note:} this function is normally
|
|
|
|
only used by code that needs to save and restore the error indicator
|
|
|
|
temporarily.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, char *message}
|
|
|
|
This is the most common way to set the error indicator. The first
|
|
|
|
argument specifies the exception type; it is normally one of the
|
|
|
|
standard exceptions, e.g. \code{PyExc_RuntimeError}. You need not
|
|
|
|
increment its reference count. The second argument is an error
|
|
|
|
message; it is converted to a string object.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value}
|
|
|
|
This function is similar to \code{PyErr_SetString()} but lets you
|
|
|
|
specify an arbitrary Python object for the ``value'' of the exception.
|
|
|
|
You need not increment its reference count.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type}
|
|
|
|
This is a shorthand for \code{PyErr_SetString(\var{type}, Py_None}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyErr_BadArgument}{}
|
|
|
|
This is a shorthand for \code{PyErr_SetString(PyExc_TypeError,
|
|
|
|
\var{message})}, where \var{message} indicates that a built-in operation
|
|
|
|
was invoked with an illegal argument. It is mostly for internal use.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyErr_NoMemory}{}
|
|
|
|
This is a shorthand for \code{PyErr_SetNone(PyExc_MemoryError)}; it
|
|
|
|
returns \NULL{} so an object allocation function can write
|
|
|
|
\code{return PyErr_NoMemory();} when it runs out of memory.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyErr_SetFromErrno}{PyObject *type}
|
|
|
|
This is a convenience function to raise an exception when a C library
|
|
|
|
function has returned an error and set the C variable \code{errno}.
|
|
|
|
It constructs a tuple object whose first item is the integer
|
|
|
|
\code{errno} value and whose second item is the corresponding error
|
|
|
|
message (gotten from \code{strerror()}), and then calls
|
|
|
|
\code{PyErr_SetObject(\var{type}, \var{object})}. On \UNIX{}, when
|
|
|
|
the \code{errno} value is \code{EINTR}, indicating an interrupted
|
|
|
|
system call, this calls \code{PyErr_CheckSignals()}, and if that set
|
|
|
|
the error indicator, leaves it set to that. The function always
|
|
|
|
returns \NULL{}, so a wrapper function around a system call can write
|
|
|
|
\code{return PyErr_NoMemory();} when the system call returns an error.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{}
|
|
|
|
This is a shorthand for \code{PyErr_SetString(PyExc_TypeError,
|
|
|
|
\var{message})}, where \var{message} indicates that an internal
|
|
|
|
operation (e.g. a Python-C API function) was invoked with an illegal
|
|
|
|
argument. It is mostly for internal use.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyErr_CheckSignals}{}
|
|
|
|
This function interacts with Python's signal handling. It checks
|
|
|
|
whether a signal has been sent to the processes and if so, invokes the
|
|
|
|
corresponding signal handler. If the \code{signal} module is
|
|
|
|
supported, this can invoke a signal handler written in Python. In all
|
|
|
|
cases, the default effect for \code{SIGINT} is to raise the
|
|
|
|
\code{KeyboadInterrupt} exception. If an exception is raised the
|
|
|
|
error indicator is set and the function returns 1; otherwise the
|
|
|
|
function returns 0. The error indicator may or may not be cleared if
|
|
|
|
it was previously set.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{}
|
|
|
|
This function is obsolete (XXX or platform dependent?). It simulates
|
|
|
|
the effect of a \code{SIGINT} signal arriving -- the next time
|
|
|
|
\code{PyErr_CheckSignals()} is called, \code{KeyboadInterrupt} will be
|
|
|
|
raised.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\section{Standard Exceptions}
|
|
|
|
|
|
|
|
All standard Python exceptions are available as global variables whose
|
|
|
|
names are \code{PyExc_} followed by the Python exception name.
|
|
|
|
These have the type \code{PyObject *}; they are all string objects.
|
|
|
|
For completion, here are all the variables:
|
|
|
|
\code{PyExc_AccessError},
|
|
|
|
\code{PyExc_AssertionError},
|
|
|
|
\code{PyExc_AttributeError},
|
|
|
|
\code{PyExc_EOFError},
|
|
|
|
\code{PyExc_FloatingPointError},
|
|
|
|
\code{PyExc_IOError},
|
|
|
|
\code{PyExc_ImportError},
|
|
|
|
\code{PyExc_IndexError},
|
|
|
|
\code{PyExc_KeyError},
|
|
|
|
\code{PyExc_KeyboardInterrupt},
|
|
|
|
\code{PyExc_MemoryError},
|
|
|
|
\code{PyExc_NameError},
|
|
|
|
\code{PyExc_OverflowError},
|
|
|
|
\code{PyExc_RuntimeError},
|
|
|
|
\code{PyExc_SyntaxError},
|
|
|
|
\code{PyExc_SystemError},
|
|
|
|
\code{PyExc_SystemExit},
|
|
|
|
\code{PyExc_TypeError},
|
|
|
|
\code{PyExc_ValueError},
|
|
|
|
\code{PyExc_ZeroDivisionError}.
|
|
|
|
|
1997-05-15 21:43:21 +00:00
|
|
|
|
|
|
|
\chapter{Utilities}
|
|
|
|
|
|
|
|
The functions in this chapter perform various utility tasks, such as
|
|
|
|
parsing function arguments and constructing Python values from C
|
|
|
|
values.
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{Py_FdIsInteractive}{FILE *fp, char *filename}
|
|
|
|
Return true (nonzero) if the standard I/O file \code{fp} with name
|
|
|
|
\code{filename} is deemed interactive. This is the case for files for
|
|
|
|
which \code{isatty(fileno(fp))} is true. If the global flag
|
|
|
|
\code{Py_InteractiveFlag} is true, this function also returns true if
|
|
|
|
the \code{name} pointer is \NULL{} or if the name is equal to one of
|
|
|
|
the strings \code{"<stdin>"} or \code{"???"}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{long}{PyOS_GetLastModificationTime}{char *filename}
|
|
|
|
Return the time of last modification of the file \code{filename}.
|
|
|
|
The result is encoded in the same way as the timestamp returned by
|
|
|
|
the standard C library function \code{time()}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\chapter{Debugging}
|
|
|
|
|
|
|
|
XXX Explain Py_DEBUG, Py_TRACE_REFS, Py_REF_DEBUG.
|
|
|
|
|
|
|
|
|
|
|
|
\chapter{The Very High Level Layer}
|
|
|
|
|
|
|
|
The functions in this chapter will let you execute Python source code
|
|
|
|
given in a file or a buffer, but they will not let you interact in a
|
|
|
|
more detailed way with the interpreter.
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\begin{cfuncdesc}{int}{PyRun_AnyFile}{FILE *, char *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyRun_SimpleString}{char *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyRun_SimpleFile}{FILE *, char *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyRun_InteractiveOne}{FILE *, char *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyRun_InteractiveLoop}{FILE *, char *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{struct _node *}{PyParser_SimpleParseString}{char *, int}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{struct _node *}{PyParser_SimpleParseFile}{FILE *, char *, int}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{}{PyObject *PyRun}{ROTO((char *, int, PyObject *, PyObject *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{}{PyObject *PyRun}{ROTO((FILE *, char *, int, PyObject *, PyObject *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{}{PyObject *Py}{ROTO((char *, char *, int}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-05-15 21:43:21 +00:00
|
|
|
|
|
|
|
\chapter{Abstract Objects Layer}
|
|
|
|
|
|
|
|
The functions in this chapter interact with Python objects regardless
|
|
|
|
of their type, or with wide classes of object types (e.g. all
|
|
|
|
numerical types, or all sequence types). When used on object types
|
|
|
|
for which they do not apply, they will flag a Python exception.
|
|
|
|
|
|
|
|
\section{Object Protocol}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_Print}{PyObject *o, FILE *fp, int flags}
|
|
|
|
Print an object \code{o}, on file \code{fp}. Returns -1 on error
|
|
|
|
The flags argument is used to enable certain printing
|
|
|
|
options. The only option currently supported is \code{Py_Print_RAW}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_HasAttrString}{PyObject *o, char *attr_name}
|
|
|
|
Returns 1 if o has the attribute attr_name, and 0 otherwise.
|
|
|
|
This is equivalent to the Python expression:
|
|
|
|
\code{hasattr(o,attr_name)}.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_GetAttrString}{PyObject *o, char *attr_name}
|
1997-08-14 20:34:33 +00:00
|
|
|
Retrieve an attributed named attr_name from object o.
|
1997-05-15 21:43:21 +00:00
|
|
|
Returns the attribute value on success, or \NULL{} on failure.
|
|
|
|
This is the equivalent of the Python expression: \code{o.attr_name}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_HasAttr}{PyObject *o, PyObject *attr_name}
|
|
|
|
Returns 1 if o has the attribute attr_name, and 0 otherwise.
|
|
|
|
This is equivalent to the Python expression:
|
|
|
|
\code{hasattr(o,attr_name)}.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_GetAttr}{PyObject *o, PyObject *attr_name}
|
|
|
|
Retrieve an attributed named attr_name form object o.
|
|
|
|
Returns the attribute value on success, or \NULL{} on failure.
|
|
|
|
This is the equivalent of the Python expression: o.attr_name.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_SetAttrString}{PyObject *o, char *attr_name, PyObject *v}
|
|
|
|
Set the value of the attribute named \code{attr_name}, for object \code{o},
|
|
|
|
to the value \code{v}. Returns -1 on failure. This is
|
|
|
|
the equivalent of the Python statement: \code{o.attr_name=v}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_SetAttr}{PyObject *o, PyObject *attr_name, PyObject *v}
|
|
|
|
Set the value of the attribute named \code{attr_name}, for
|
|
|
|
object \code{o},
|
|
|
|
to the value \code{v}. Returns -1 on failure. This is
|
|
|
|
the equivalent of the Python statement: \code{o.attr_name=v}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_DelAttrString}{PyObject *o, char *attr_name}
|
|
|
|
Delete attribute named \code{attr_name}, for object \code{o}. Returns -1 on
|
|
|
|
failure. This is the equivalent of the Python
|
|
|
|
statement: \code{del o.attr_name}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_DelAttr}{PyObject *o, PyObject *attr_name}
|
|
|
|
Delete attribute named \code{attr_name}, for object \code{o}. Returns -1 on
|
|
|
|
failure. This is the equivalent of the Python
|
|
|
|
statement: \code{del o.attr_name}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_Cmp}{PyObject *o1, PyObject *o2, int *result}
|
|
|
|
Compare the values of \code{o1} and \code{o2} using a routine provided by
|
|
|
|
\code{o1}, if one exists, otherwise with a routine provided by \code{o2}.
|
|
|
|
The result of the comparison is returned in \code{result}. Returns
|
|
|
|
-1 on failure. This is the equivalent of the Python
|
|
|
|
statement: \code{result=cmp(o1,o2)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_Compare}{PyObject *o1, PyObject *o2}
|
|
|
|
Compare the values of \code{o1} and \code{o2} using a routine provided by
|
|
|
|
\code{o1}, if one exists, otherwise with a routine provided by \code{o2}.
|
|
|
|
Returns the result of the comparison on success. On error,
|
|
|
|
the value returned is undefined. This is equivalent to the
|
|
|
|
Python expression: \code{cmp(o1,o2)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_Repr}{PyObject *o}
|
|
|
|
Compute the string representation of object, \code{o}. Returns the
|
|
|
|
string representation on success, \NULL{} on failure. This is
|
|
|
|
the equivalent of the Python expression: \code{repr(o)}.
|
|
|
|
Called by the \code{repr()} built-in function and by reverse quotes.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_Str}{PyObject *o}
|
|
|
|
Compute the string representation of object, \code{o}. Returns the
|
|
|
|
string representation on success, \NULL{} on failure. This is
|
|
|
|
the equivalent of the Python expression: \code{str(o)}.
|
|
|
|
Called by the \code{str()} built-in function and by the \code{print}
|
|
|
|
statement.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyCallable_Check}{PyObject *o}
|
|
|
|
Determine if the object \code{o}, is callable. Return 1 if the
|
|
|
|
object is callable and 0 otherwise.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_CallObject}{PyObject *callable_object, PyObject *args}
|
|
|
|
Call a callable Python object \code{callable_object}, with
|
|
|
|
arguments given by the tuple \code{args}. If no arguments are
|
|
|
|
needed, then args may be \NULL{}. Returns the result of the
|
|
|
|
call on success, or \NULL{} on failure. This is the equivalent
|
|
|
|
of the Python expression: \code{apply(o, args)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_CallFunction}{PyObject *callable_object, char *format, ...}
|
|
|
|
Call a callable Python object \code{callable_object}, with a
|
|
|
|
variable number of C arguments. The C arguments are described
|
|
|
|
using a mkvalue-style format string. The format may be \NULL{},
|
|
|
|
indicating that no arguments are provided. Returns the
|
|
|
|
result of the call on success, or \NULL{} on failure. This is
|
|
|
|
the equivalent of the Python expression: \code{apply(o,args)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_CallMethod}{PyObject *o, char *m, char *format, ...}
|
|
|
|
Call the method named \code{m} of object \code{o} with a variable number of
|
|
|
|
C arguments. The C arguments are described by a mkvalue
|
|
|
|
format string. The format may be \NULL{}, indicating that no
|
|
|
|
arguments are provided. Returns the result of the call on
|
|
|
|
success, or \NULL{} on failure. This is the equivalent of the
|
|
|
|
Python expression: \code{o.method(args)}.
|
|
|
|
Note that Special method names, such as "\code{__add__}",
|
|
|
|
"\code{__getitem__}", and so on are not supported. The specific
|
|
|
|
abstract-object routines for these must be used.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_Hash}{PyObject *o}
|
|
|
|
Compute and return the hash value of an object \code{o}. On
|
|
|
|
failure, return -1. This is the equivalent of the Python
|
|
|
|
expression: \code{hash(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_IsTrue}{PyObject *o}
|
|
|
|
Returns 1 if the object \code{o} is considered to be true, and
|
|
|
|
0 otherwise. This is equivalent to the Python expression:
|
|
|
|
\code{not not o}.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_Type}{PyObject *o}
|
|
|
|
On success, returns a type object corresponding to the object
|
|
|
|
type of object \code{o}. On failure, returns \NULL{}. This is
|
|
|
|
equivalent to the Python expression: \code{type(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_Length}{PyObject *o}
|
|
|
|
Return the length of object \code{o}. If the object \code{o} provides
|
|
|
|
both sequence and mapping protocols, the sequence length is
|
|
|
|
returned. On error, -1 is returned. This is the equivalent
|
|
|
|
to the Python expression: \code{len(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyObject_GetItem}{PyObject *o, PyObject *key}
|
|
|
|
Return element of \code{o} corresponding to the object \code{key} or \NULL{}
|
|
|
|
on failure. This is the equivalent of the Python expression:
|
|
|
|
\code{o[key]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_SetItem}{PyObject *o, PyObject *key, PyObject *v}
|
|
|
|
Map the object \code{key} to the value \code{v}.
|
|
|
|
Returns -1 on failure. This is the equivalent
|
|
|
|
of the Python statement: \code{o[key]=v}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyObject_DelItem}{PyObject *o, PyObject *key, PyObject *v}
|
|
|
|
Delete the mapping for \code{key} from \code{*o}. Returns -1
|
|
|
|
on failure.
|
1997-08-14 20:34:33 +00:00
|
|
|
This is the equivalent of the Python statement: \code{del o[key]}.
|
1997-05-15 21:43:21 +00:00
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\section{Number Protocol}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyNumber_Check}{PyObject *o}
|
|
|
|
Returns 1 if the object \code{o} provides numeric protocols, and
|
|
|
|
false otherwise.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Add}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the result of adding \code{o1} and \code{o2}, or null on failure.
|
|
|
|
This is the equivalent of the Python expression: \code{o1+o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Subtract}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the result of subtracting \code{o2} from \code{o1}, or null on
|
|
|
|
failure. This is the equivalent of the Python expression:
|
|
|
|
\code{o1-o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Multiply}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the result of multiplying \code{o1} and \code{o2}, or null on
|
|
|
|
failure. This is the equivalent of the Python expression:
|
|
|
|
\code{o1*o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Divide}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the result of dividing \code{o1} by \code{o2}, or null on failure.
|
|
|
|
This is the equivalent of the Python expression: \code{o1/o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Remainder}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the remainder of dividing \code{o1} by \code{o2}, or null on
|
|
|
|
failure. This is the equivalent of the Python expression:
|
|
|
|
\code{o1\%o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Divmod}{PyObject *o1, PyObject *o2}
|
|
|
|
See the built-in function divmod. Returns \NULL{} on failure.
|
|
|
|
This is the equivalent of the Python expression:
|
|
|
|
\code{divmod(o1,o2)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Power}{PyObject *o1, PyObject *o2, PyObject *o3}
|
|
|
|
See the built-in function pow. Returns \NULL{} on failure.
|
|
|
|
This is the equivalent of the Python expression:
|
|
|
|
\code{pow(o1,o2,o3)}, where \code{o3} is optional.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Negative}{PyObject *o}
|
|
|
|
Returns the negation of \code{o} on success, or null on failure.
|
|
|
|
This is the equivalent of the Python expression: \code{-o}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Positive}{PyObject *o}
|
|
|
|
Returns \code{o} on success, or \NULL{} on failure.
|
|
|
|
This is the equivalent of the Python expression: \code{+o}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Absolute}{PyObject *o}
|
|
|
|
Returns the absolute value of \code{o}, or null on failure. This is
|
|
|
|
the equivalent of the Python expression: \code{abs(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Invert}{PyObject *o}
|
|
|
|
Returns the bitwise negation of \code{o} on success, or \NULL{} on
|
|
|
|
failure. This is the equivalent of the Python expression:
|
1997-08-14 20:34:33 +00:00
|
|
|
\code{\~o}.
|
1997-05-15 21:43:21 +00:00
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Lshift}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the result of left shifting \code{o1} by \code{o2} on success, or
|
|
|
|
\NULL{} on failure. This is the equivalent of the Python
|
|
|
|
expression: \code{o1 << o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Rshift}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the result of right shifting \code{o1} by \code{o2} on success, or
|
|
|
|
\NULL{} on failure. This is the equivalent of the Python
|
|
|
|
expression: \code{o1 >> o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_And}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the result of "anding" \code{o2} and \code{o2} on success and \NULL{}
|
|
|
|
on failure. This is the equivalent of the Python
|
|
|
|
expression: \code{o1 and o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Xor}{PyObject *o1, PyObject *o2}
|
|
|
|
Returns the bitwise exclusive or of \code{o1} by \code{o2} on success, or
|
|
|
|
\NULL{} on failure. This is the equivalent of the Python
|
|
|
|
expression: \code{o1\^{ }o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Or}{PyObject *o1, PyObject *o2}
|
1997-08-14 20:34:33 +00:00
|
|
|
Returns the result of \code{o1} and \code{o2} on success, or \NULL{} on
|
1997-05-15 21:43:21 +00:00
|
|
|
failure. This is the equivalent of the Python expression:
|
|
|
|
\code{o1 or o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Coerce}{PyObject *o1, PyObject *o2}
|
|
|
|
This function takes the addresses of two variables of type
|
|
|
|
\code{PyObject*}.
|
|
|
|
|
|
|
|
If the objects pointed to by \code{*p1} and \code{*p2} have the same type,
|
|
|
|
increment their reference count and return 0 (success).
|
|
|
|
If the objects can be converted to a common numeric type,
|
|
|
|
replace \code{*p1} and \code{*p2} by their converted value (with 'new'
|
|
|
|
reference counts), and return 0.
|
|
|
|
If no conversion is possible, or if some other error occurs,
|
|
|
|
return -1 (failure) and don't increment the reference counts.
|
|
|
|
The call \code{PyNumber_Coerce(\&o1, \&o2)} is equivalent to the Python
|
|
|
|
statement \code{o1, o2 = coerce(o1, o2)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Int}{PyObject *o}
|
|
|
|
Returns the \code{o} converted to an integer object on success, or
|
|
|
|
\NULL{} on failure. This is the equivalent of the Python
|
|
|
|
expression: \code{int(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Long}{PyObject *o}
|
|
|
|
Returns the \code{o} converted to a long integer object on success,
|
|
|
|
or \NULL{} on failure. This is the equivalent of the Python
|
|
|
|
expression: \code{long(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyNumber_Float}{PyObject *o}
|
|
|
|
Returns the \code{o} converted to a float object on success, or \NULL{}
|
|
|
|
on failure. This is the equivalent of the Python expression:
|
|
|
|
\code{float(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\section{Sequence protocol}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_Check}{PyObject *o}
|
|
|
|
Return 1 if the object provides sequence protocol, and 0
|
|
|
|
otherwise.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PySequence_Concat}{PyObject *o1, PyObject *o2}
|
|
|
|
Return the concatination of \code{o1} and \code{o2} on success, and \NULL{} on
|
|
|
|
failure. This is the equivalent of the Python
|
|
|
|
expression: \code{o1+o2}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PySequence_Repeat}{PyObject *o, int count}
|
1997-08-14 20:34:33 +00:00
|
|
|
Return the result of repeating sequence object \code{o} \code{count} times,
|
1997-05-15 21:43:21 +00:00
|
|
|
or \NULL{} on failure. This is the equivalent of the Python
|
|
|
|
expression: \code{o*count}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PySequence_GetItem}{PyObject *o, int i}
|
|
|
|
Return the ith element of \code{o}, or \NULL{} on failure. This is the
|
|
|
|
equivalent of the Python expression: \code{o[i]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PySequence_GetSlice}{PyObject *o, int i1, int i2}
|
|
|
|
Return the slice of sequence object \code{o} between \code{i1} and \code{i2}, or
|
|
|
|
\NULL{} on failure. This is the equivalent of the Python
|
|
|
|
expression, \code{o[i1:i2]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_SetItem}{PyObject *o, int i, PyObject *v}
|
|
|
|
Assign object \code{v} to the \code{i}th element of \code{o}.
|
|
|
|
Returns -1 on failure. This is the equivalent of the Python
|
|
|
|
statement, \code{o[i]=v}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_DelItem}{PyObject *o, int i}
|
|
|
|
Delete the \code{i}th element of object \code{v}. Returns
|
|
|
|
-1 on failure. This is the equivalent of the Python
|
|
|
|
statement: \code{del o[i]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_SetSlice}{PyObject *o, int i1, int i2, PyObject *v}
|
|
|
|
Assign the sequence object \code{v} to the slice in sequence
|
|
|
|
object \code{o} from \code{i1} to \code{i2}. This is the equivalent of the Python
|
|
|
|
statement, \code{o[i1:i2]=v}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_DelSlice}{PyObject *o, int i1, int i2}
|
|
|
|
Delete the slice in sequence object, \code{o}, from \code{i1} to \code{i2}.
|
|
|
|
Returns -1 on failure. This is the equivalent of the Python
|
|
|
|
statement: \code{del o[i1:i2]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PySequence_Tuple}{PyObject *o}
|
|
|
|
Returns the \code{o} as a tuple on success, and \NULL{} on failure.
|
|
|
|
This is equivalent to the Python expression: \code{tuple(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_Count}{PyObject *o, PyObject *value}
|
|
|
|
Return the number of occurrences of \code{value} on \code{o}, that is,
|
|
|
|
return the number of keys for which \code{o[key]==value}. On
|
|
|
|
failure, return -1. This is equivalent to the Python
|
|
|
|
expression: \code{o.count(value)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_In}{PyObject *o, PyObject *value}
|
|
|
|
Determine if \code{o} contains \code{value}. If an item in \code{o} is equal to
|
|
|
|
\code{value}, return 1, otherwise return 0. On error, return -1. This
|
|
|
|
is equivalent to the Python expression: \code{value in o}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySequence_Index}{PyObject *o, PyObject *value}
|
1997-08-14 20:34:33 +00:00
|
|
|
Return the first index for which \code{o[i]==value}. On error,
|
1997-05-15 21:43:21 +00:00
|
|
|
return -1. This is equivalent to the Python
|
|
|
|
expression: \code{o.index(value)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\section{Mapping protocol}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyMapping_Check}{PyObject *o}
|
|
|
|
Return 1 if the object provides mapping protocol, and 0
|
|
|
|
otherwise.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyMapping_Length}{PyObject *o}
|
|
|
|
Returns the number of keys in object \code{o} on success, and -1 on
|
|
|
|
failure. For objects that do not provide sequence protocol,
|
|
|
|
this is equivalent to the Python expression: \code{len(o)}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyMapping_DelItemString}{PyObject *o, char *key}
|
|
|
|
Remove the mapping for object \code{key} from the object \code{o}.
|
|
|
|
Return -1 on failure. This is equivalent to
|
|
|
|
the Python statement: \code{del o[key]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyMapping_DelItem}{PyObject *o, PyObject *key}
|
|
|
|
Remove the mapping for object \code{key} from the object \code{o}.
|
|
|
|
Return -1 on failure. This is equivalent to
|
|
|
|
the Python statement: \code{del o[key]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyMapping_HasKeyString}{PyObject *o, char *key}
|
|
|
|
On success, return 1 if the mapping object has the key \code{key}
|
|
|
|
and 0 otherwise. This is equivalent to the Python expression:
|
|
|
|
\code{o.has_key(key)}.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyMapping_HasKey}{PyObject *o, PyObject *key}
|
|
|
|
Return 1 if the mapping object has the key \code{key}
|
|
|
|
and 0 otherwise. This is equivalent to the Python expression:
|
|
|
|
\code{o.has_key(key)}.
|
|
|
|
This function always succeeds.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyMapping_Keys}{PyObject *o}
|
|
|
|
On success, return a list of the keys in object \code{o}. On
|
|
|
|
failure, return \NULL{}. This is equivalent to the Python
|
|
|
|
expression: \code{o.keys()}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyMapping_Values}{PyObject *o}
|
|
|
|
On success, return a list of the values in object \code{o}. On
|
|
|
|
failure, return \NULL{}. This is equivalent to the Python
|
|
|
|
expression: \code{o.values()}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyMapping_Items}{PyObject *o}
|
|
|
|
On success, return a list of the items in object \code{o}, where
|
|
|
|
each item is a tuple containing a key-value pair. On
|
|
|
|
failure, return \NULL{}. This is equivalent to the Python
|
|
|
|
expression: \code{o.items()}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyMapping_Clear}{PyObject *o}
|
|
|
|
Make object \code{o} empty. Returns 1 on success and 0 on failure.
|
|
|
|
This is equivalent to the Python statement:
|
|
|
|
\code{for key in o.keys(): del o[key]}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyMapping_GetItemString}{PyObject *o, char *key}
|
|
|
|
Return element of \code{o} corresponding to the object \code{key} or \NULL{}
|
|
|
|
on failure. This is the equivalent of the Python expression:
|
|
|
|
\code{o[key]}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyMapping_SetItemString}{PyObject *o, char *key, PyObject *v}
|
|
|
|
Map the object \code{key} to the value \code{v} in object \code{o}. Returns
|
|
|
|
-1 on failure. This is the equivalent of the Python
|
|
|
|
statement: \code{o[key]=v}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\section{Constructors}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *file_name, char *mode}
|
|
|
|
On success, returns a new file object that is opened on the
|
|
|
|
file given by \code{file_name}, with a file mode given by \code{mode},
|
|
|
|
where \code{mode} has the same semantics as the standard C routine,
|
|
|
|
fopen. On failure, return -1.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp, char *file_name, char *mode, int close_on_del}
|
|
|
|
Return a new file object for an already opened standard C
|
|
|
|
file pointer, \code{fp}. A file name, \code{file_name}, and open mode,
|
|
|
|
\code{mode}, must be provided as well as a flag, \code{close_on_del}, that
|
|
|
|
indicates whether the file is to be closed when the file
|
|
|
|
object is destroyed. On failure, return -1.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
|
|
|
|
Returns a new float object with the value \code{v} on success, and
|
|
|
|
\NULL{} on failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long v}
|
|
|
|
Returns a new int object with the value \code{v} on success, and
|
|
|
|
\NULL{} on failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyList_New}{int l}
|
|
|
|
Returns a new list of length \code{l} on success, and \NULL{} on
|
|
|
|
failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
|
|
|
|
Returns a new long object with the value \code{v} on success, and
|
|
|
|
\NULL{} on failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
|
|
|
|
Returns a new long object with the value \code{v} on success, and
|
|
|
|
\NULL{} on failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
|
|
|
|
Returns a new empty dictionary on success, and \NULL{} on
|
|
|
|
failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyString_FromString}{char *v}
|
|
|
|
Returns a new string object with the value \code{v} on success, and
|
|
|
|
\NULL{} on failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{char *v, int l}
|
|
|
|
Returns a new string object with the value \code{v} and length \code{l}
|
|
|
|
on success, and \NULL{} on failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject*}{PyTuple_New}{int l}
|
|
|
|
Returns a new tuple of length \code{l} on success, and \NULL{} on
|
|
|
|
failure.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\chapter{Concrete Objects Layer}
|
|
|
|
|
|
|
|
The functions in this chapter are specific to certain Python object
|
|
|
|
types. Passing them an object of the wrong type is not a good idea;
|
|
|
|
if you receive an object from a Python program and you are not sure
|
|
|
|
that it has the right type, you must perform a type check first;
|
|
|
|
e.g. to check that an object is a dictionary, use
|
|
|
|
\code{PyDict_Check()}.
|
|
|
|
|
|
|
|
|
|
|
|
\chapter{Defining New Object Types}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{_PyObject_New}{PyTypeObject *type}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\begin{cfuncdesc}{PyObject *}{_PyObject_NewVar}{PyTypeObject *type, int size}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{TYPE}{_PyObject_NEW}{TYPE, PyTypeObject *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{TYPE}{_PyObject_NEW_VAR}{TYPE, PyTypeObject *, int size}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-08-14 20:35:38 +00:00
|
|
|
\chapter{Initialization, Finalization, and Threads}
|
|
|
|
|
|
|
|
% XXX Check argument/return type of all these
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_Initialize}{}
|
|
|
|
Initialize the Python interpreter. In an application embedding
|
|
|
|
Python, this should be called before using any other Python/C API
|
|
|
|
functions; with the exception of \code{Py_SetProgramName()},
|
|
|
|
\code{PyEval_InitThreads()}, \code{PyEval_ReleaseLock()}, and
|
|
|
|
\code{PyEval_AcquireLock()}. This initializes the table of loaded
|
|
|
|
modules (\code{sys.modules}), and creates the fundamental modules
|
|
|
|
\code{__builtin__}, \code{__main__} and \code{sys}. It also
|
|
|
|
initializes the module search path (\code{sys.path}). It does not set
|
|
|
|
\code{sys.argv}; use \code{PySys_SetArgv()} for that. It is a fatal
|
|
|
|
error to call it for a second time without calling
|
|
|
|
\code{Py_Finalize()} first. There is no return value; it is a fatal
|
|
|
|
error if the initialization fails.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_Finalize}{}
|
|
|
|
Undo all initializations made by \code{Py_Initialize()} and subsequent
|
|
|
|
use of Python/C API functions, and destroy all sub-interpreters (see
|
|
|
|
\code{Py_NewInterpreter()} below) that were created and not yet
|
|
|
|
destroyed since the last call to \code{Py_Initialize()}. Ideally,
|
|
|
|
this frees all memory allocated by the Python interpreter. It is a
|
|
|
|
fatal error to call it for a second time without calling
|
|
|
|
\code{Py_Initialize()} again first. There is no return value; errors
|
|
|
|
during finalization are ignored.
|
|
|
|
|
|
|
|
This function is provided for a number of reasons. An embedding
|
|
|
|
application might want to restart Python without having to restart the
|
|
|
|
application itself. An application that has loaded the Python
|
|
|
|
interpreter from a dynamically loadable library (or DLL) might want to
|
|
|
|
free all memory allocated by Python before unloading the DLL. During a
|
|
|
|
hunt for memory leaks in an application a developer might want to free
|
|
|
|
all memory allocated by Python before exiting from the application.
|
|
|
|
|
|
|
|
\emph{Bugs and caveats:} The destruction of modules and objects in
|
|
|
|
modules is done in random order; this may cause destructors
|
|
|
|
(\code{__del__} methods) to fail when they depend on other objects
|
|
|
|
(even functions) or modules. Dynamically loaded extension modules
|
|
|
|
loaded by Python are not unloaded. Small amounts of memory allocated
|
|
|
|
by the Python interpreter may not be freed (if you find a leak, please
|
|
|
|
report it). Memory tied up in circular references between objects is
|
|
|
|
not freed. Some memory allocated by extension modules may not be
|
|
|
|
freed. Some extension may not work properly if their initialization
|
|
|
|
routine is called more than once; this can happen if an applcation
|
|
|
|
calls \code{Py_Initialize()} and \code{Py_Finalize()} more than once.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyThreadState *}{Py_NewInterpreter}{}
|
|
|
|
Create a new sub-interpreter. This is an (almost) totally separate
|
|
|
|
environment for the execution of Python code. In particular, the new
|
|
|
|
interpreter has separate, independent versions of all imported
|
|
|
|
modules, including the fundamental modules \code{__builtin__},
|
|
|
|
\code{__main__} and \code{sys}. The table of loaded modules
|
|
|
|
(\code{sys.modules}) and the module search path (\code{sys.path}) are
|
|
|
|
also separate. The new environment has no \code{sys.argv} variable.
|
|
|
|
It has new standard I/O stream file objects \code{sys.stdin},
|
|
|
|
\code{sys.stdout} and \code{sys.stderr} (however these refer to the
|
|
|
|
same underlying \code{FILE} structures in the C library).
|
|
|
|
|
|
|
|
The return value points to the first thread state created in the new
|
|
|
|
sub-interpreter. This thread state is made the current thread state.
|
|
|
|
Note that no actual thread is created; see the discussion of thread
|
|
|
|
states below. If creation of the new interpreter is unsuccessful,
|
|
|
|
\code{NULL} is returned; no exception is set since the exception state
|
|
|
|
is stored in the current thread state and there may not be a current
|
|
|
|
thread state. (Like all other Python/C API functions, the global
|
|
|
|
interpreter lock must be held before calling this function and is
|
|
|
|
still held when it returns; however, unlike most other Python/C API
|
|
|
|
functions, there needn't be a current thread state on entry.)
|
|
|
|
|
|
|
|
Extension modules are shared between (sub-)interpreters as follows:
|
|
|
|
the first time a particular extension is imported, it is initialized
|
|
|
|
normally, and a (shallow) copy of its module's dictionary is
|
|
|
|
squirreled away. When the same extension is imported by another
|
|
|
|
(sub-)interpreter, a new module is initialized and filled with the
|
|
|
|
contents of this copy; the extension's \code{init} function is not
|
|
|
|
called. Note that this is different from what happens when as
|
|
|
|
extension is imported after the interpreter has been completely
|
|
|
|
re-initialized by calling \code{Py_Finalize()} and
|
|
|
|
\code{Py_Initialize()}; in that case, the extension's \code{init}
|
|
|
|
function \emph{is} called again.
|
|
|
|
|
|
|
|
\emph{Bugs and caveats:} Because sub-interpreters (and the main
|
|
|
|
interpreter) are part of the same process, the insulation between them
|
|
|
|
isn't perfect -- for example, using low-level file operations like
|
|
|
|
\code{os.close()} they can (accidentally or maliciously) affect each
|
|
|
|
other's open files. Because of the way extensions are shared between
|
|
|
|
(sub-)interpreters, some extensions may not work properly; this is
|
|
|
|
especially likely when the extension makes use of (static) global
|
|
|
|
variables, or when the extension manipulates its module's dictionary
|
|
|
|
after its initialization. It is possible to insert objects created in
|
|
|
|
one sub-interpreter into a namespace of another sub-interpreter; this
|
|
|
|
should be done with great care to avoid sharing user-defined
|
|
|
|
functions, methods, instances or classes between sub-interpreters,
|
|
|
|
since import operations executed by such objects may affect the
|
|
|
|
wrong (sub-)interpreter's dictionary of loaded modules. (XXX This is
|
|
|
|
a hard-to-fix bug that will be addressed in a future release.)
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_EndInterpreter}{PyThreadState *tstate}
|
|
|
|
Destroy the (sub-)interpreter represented by the given thread state.
|
|
|
|
The given thread state must be the current thread state. See the
|
|
|
|
discussion of thread states below. When the call returns, the current
|
|
|
|
thread state is \code{NULL}. All thread states associated with this
|
|
|
|
interpreted are destroyed. (The global interpreter lock must be held
|
|
|
|
before calling this function and is still held when it returns.)
|
|
|
|
\code{Py_Finalize()} will destroy all sub-interpreters that haven't
|
|
|
|
been explicitly destroyed at that point.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{Py_SetProgramName}{char *name}
|
|
|
|
This function should be called before \code{Py_Initialize()} is called
|
|
|
|
for the first time, if it is called at all. It tells the interpreter
|
|
|
|
the value of the \code{argv[0]} argument to the \code{main()} function
|
|
|
|
of the program. This is used by \code{Py_GetPath()} and some other
|
|
|
|
functions below to find the Python run-time libraries relative to the
|
|
|
|
interpreter executable. The default value is \code{"python"}. The
|
|
|
|
argument should point to a zero-terminated character string in static
|
|
|
|
storage whose contents will not change for the duration of the
|
|
|
|
program's execution. No code in the Python interpreter will change
|
|
|
|
the contents of this storage.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{char *}{Py_GetProgramName}{}
|
|
|
|
Return the program name set with \code{Py_SetProgramName()}, or the
|
|
|
|
default. The returned string points into static storage; the caller
|
|
|
|
should not modify its value.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{char *}{Py_GetPrefix}{}
|
|
|
|
Return the ``prefix'' for installed platform-independent files. This
|
|
|
|
is derived through a number of complicated rules from the program name
|
|
|
|
set with \code{Py_SetProgramName()} and some environment variables;
|
|
|
|
for example, if the program name is \code{"/usr/local/bin/python"},
|
|
|
|
the prefix is \code{"/usr/local"}. The returned string points into
|
|
|
|
static storage; the caller should not modify its value. This
|
|
|
|
corresponds to the \code{prefix} variable in the top-level
|
|
|
|
\code{Makefile} and the \code{--prefix} argument to the
|
|
|
|
\code{configure} script at build time. The value is available to
|
|
|
|
Python code as \code{sys.prefix}. It is only useful on Unix. See
|
|
|
|
also the next function.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{char *}{Py_GetExecPrefix}{}
|
|
|
|
Return the ``exec-prefix'' for installed platform-\emph{de}pendent
|
|
|
|
files. This is derived through a number of complicated rules from the
|
|
|
|
program name set with \code{Py_SetProgramName()} and some environment
|
|
|
|
variables; for example, if the program name is
|
|
|
|
\code{"/usr/local/bin/python"}, the exec-prefix is
|
|
|
|
\code{"/usr/local"}. The returned string points into static storage;
|
|
|
|
the caller should not modify its value. This corresponds to the
|
|
|
|
\code{exec_prefix} variable in the top-level \code{Makefile} and the
|
|
|
|
\code{--exec_prefix} argument to the \code{configure} script at build
|
|
|
|
time. The value is available to Python code as
|
|
|
|
\code{sys.exec_prefix}. It is only useful on Unix.
|
|
|
|
|
|
|
|
Background: The exec-prefix differs from the prefix when platform
|
|
|
|
dependent files (such as executables and shared libraries) are
|
|
|
|
installed in a different directory tree. In a typical installation,
|
|
|
|
platform dependent files may be installed in the
|
|
|
|
\code{"/usr/local/plat"} subtree while platform independent may be
|
|
|
|
installed in \code{"/usr/local"}.
|
|
|
|
|
|
|
|
Generally speaking, a platform is a combination of hardware and
|
|
|
|
software families, e.g. Sparc machines running the Solaris 2.x
|
|
|
|
operating system are considered the same platform, but Intel machines
|
|
|
|
running Solaris 2.x are another platform, and Intel machines running
|
|
|
|
Linux are yet another platform. Different major revisions of the same
|
|
|
|
operating system generally also form different platforms. Non-Unix
|
|
|
|
operating systems are a different story; the installation strategies
|
|
|
|
on those systems are so different that the prefix and exec-prefix are
|
|
|
|
meaningless, and set to the empty string. Note that compiled Python
|
|
|
|
bytecode files are platform independent (but not independent from the
|
|
|
|
Python version by which they were compiled!).
|
|
|
|
|
|
|
|
System administrators will know how to configure the \code{mount} or
|
|
|
|
\code{automount} programs to share \code{"/usr/local"} between platforms
|
|
|
|
while having \code{"/usr/local/plat"} be a different filesystem for each
|
|
|
|
platform.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{char *}{Py_GetProgramFullPath}{}
|
|
|
|
Return the full program name of the Python executable; this is
|
|
|
|
computed as a side-effect of deriving the default module search path
|
1997-08-15 18:57:32 +00:00
|
|
|
from the program name (set by \code{Py_SetProgramName()} above). The
|
1997-08-14 20:35:38 +00:00
|
|
|
returned string points into static storage; the caller should not
|
|
|
|
modify its value. The value is available to Python code as
|
|
|
|
\code{sys.executable}. % XXX is that the right sys.name?
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{char *}{Py_GetPath}{}
|
|
|
|
Return the default module search path; this is computed from the
|
1997-08-15 18:57:32 +00:00
|
|
|
program name (set by \code{Py_SetProgramName()} above) and some
|
1997-08-14 20:35:38 +00:00
|
|
|
environment variables. The returned string consists of a series of
|
|
|
|
directory names separated by a platform dependent delimiter character.
|
|
|
|
The delimiter character is \code{':'} on Unix, \code{';'} on
|
1997-08-15 18:57:32 +00:00
|
|
|
DOS/Windows, and \code{'\\n'} (the ASCII newline character) on
|
1997-08-14 20:35:38 +00:00
|
|
|
Macintosh. The returned string points into static storage; the caller
|
|
|
|
should not modify its value. The value is available to Python code
|
|
|
|
as the list \code{sys.path}, which may be modified to change the
|
|
|
|
future search path for loaded modules.
|
|
|
|
|
|
|
|
% XXX should give the exact rules
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{const char *}{Py_GetVersion}{}
|
|
|
|
Return the version of this Python interpreter. This is a string that
|
|
|
|
looks something like
|
|
|
|
|
1997-08-15 18:57:32 +00:00
|
|
|
\begin{verbatim}
|
|
|
|
"1.5a3 (#67, Aug 1 1997, 22:34:28) [GCC 2.7.2.2]"
|
|
|
|
\end{verbatim}
|
1997-08-14 20:35:38 +00:00
|
|
|
|
|
|
|
The first word (up to the first space character) is the current Python
|
|
|
|
version; the first three characters are the major and minor version
|
|
|
|
separated by a period. The returned string points into static storage;
|
|
|
|
the caller should not modify its value. The value is available to
|
|
|
|
Python code as the list \code{sys.version}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{const char *}{Py_GetPlatform}{}
|
|
|
|
Return the platform identifier for the current platform. On Unix,
|
|
|
|
this is formed from the ``official'' name of the operating system,
|
|
|
|
converted to lower case, followed by the major revision number; e.g.,
|
|
|
|
for Solaris 2.x, which is also known as SunOS 5.x, the value is
|
|
|
|
\code{"sunos5"}. On Macintosh, it is \code{"mac"}. On Windows, it
|
|
|
|
is \code{"win"}. The returned string points into static storage;
|
|
|
|
the caller should not modify its value. The value is available to
|
|
|
|
Python code as \code{sys.platform}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{const char *}{Py_GetCopyright}{}
|
|
|
|
Return the official copyright string for the current Python version,
|
|
|
|
for example
|
|
|
|
|
|
|
|
\code{"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam"}
|
|
|
|
|
|
|
|
The returned string points into static storage; the caller should not
|
|
|
|
modify its value. The value is available to Python code as the list
|
|
|
|
\code{sys.copyright}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{const char *}{Py_GetCompiler}{}
|
|
|
|
Return an indication of the compiler used to build the current Python
|
|
|
|
version, in square brackets, for example
|
|
|
|
|
|
|
|
\code{"[GCC 2.7.2.2]"}
|
|
|
|
|
|
|
|
The returned string points into static storage; the caller should not
|
|
|
|
modify its value. The value is available to Python code as part of
|
|
|
|
the variable \code{sys.version}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{const char *}{Py_GetBuildInfo}{}
|
|
|
|
Return information about the sequence number and build date and time
|
|
|
|
of the current Python interpreter instance, for example
|
|
|
|
|
1997-08-15 18:57:32 +00:00
|
|
|
\begin{verbatim}
|
|
|
|
"#67, Aug 1 1997, 22:34:28"
|
|
|
|
\end{verbatim}
|
1997-08-14 20:35:38 +00:00
|
|
|
|
|
|
|
The returned string points into static storage; the caller should not
|
|
|
|
modify its value. The value is available to Python code as part of
|
|
|
|
the variable \code{sys.version}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PySys_SetArgv}{int argc, char **argv}
|
|
|
|
% XXX
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
% XXX Other PySys thingies (doesn't really belong in this chapter)
|
|
|
|
|
|
|
|
\section{Thread State and the Global Interpreter Lock}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyEval_AcquireLock}{}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyEval_ReleaseLock}{}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyEval_AcquireThread}{PyThreadState *tstate}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyEval_ReleaseThread}{PyThreadState *tstate}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyEval_RestoreThread}{PyThreadState *tstate}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyThreadState *}{PyEval_SaveThread}{}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
% XXX These aren't really C functions!
|
1997-08-15 18:57:32 +00:00
|
|
|
\begin{cfuncdesc}{}{Py_BEGIN_ALLOW_THREADS}{}
|
1997-08-14 20:35:38 +00:00
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-08-15 18:57:32 +00:00
|
|
|
\begin{cfuncdesc}{}{Py_BEGIN_END_THREADS}{}
|
1997-08-14 20:35:38 +00:00
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-08-15 18:57:32 +00:00
|
|
|
\begin{cfuncdesc}{}{Py_BEGIN_XXX_THREADS}{}
|
1997-08-14 20:35:38 +00:00
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
XXX To be done:
|
|
|
|
|
|
|
|
PyObject, PyVarObject
|
|
|
|
|
|
|
|
PyObject_HEAD, PyObject_HEAD_INIT, PyObject_VAR_HEAD
|
|
|
|
|
|
|
|
Typedefs:
|
|
|
|
unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc,
|
|
|
|
intintargfunc, intobjargproc, intintobjargproc, objobjargproc,
|
|
|
|
getreadbufferproc, getwritebufferproc, getsegcountproc,
|
|
|
|
destructor, printfunc, getattrfunc, getattrofunc, setattrfunc,
|
|
|
|
setattrofunc, cmpfunc, reprfunc, hashfunc
|
|
|
|
|
|
|
|
PyNumberMethods
|
|
|
|
|
|
|
|
PySequenceMethods
|
|
|
|
|
|
|
|
PyMappingMethods
|
|
|
|
|
|
|
|
PyBufferProcs
|
|
|
|
|
|
|
|
PyTypeObject
|
|
|
|
|
|
|
|
DL_IMPORT
|
|
|
|
|
|
|
|
PyType_Type
|
|
|
|
|
|
|
|
Py*_Check
|
|
|
|
|
|
|
|
Py_None, _Py_NoneStruct
|
|
|
|
|
|
|
|
_PyObject_New, _PyObject_NewVar
|
|
|
|
|
|
|
|
PyObject_NEW, PyObject_NEW_VAR
|
|
|
|
|
|
|
|
|
|
|
|
\chapter{Specific Data Types}
|
|
|
|
|
|
|
|
This chapter describes the functions that deal with specific types of
|
|
|
|
Python objects. It is structured like the ``family tree'' of Python
|
|
|
|
object types.
|
|
|
|
|
|
|
|
|
|
|
|
\section{Fundamental Objects}
|
|
|
|
|
|
|
|
This section describes Python type objects and the singleton object
|
|
|
|
\code{None}.
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Type Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyTypeObject}
|
|
|
|
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyObject *}{PyType_Type}
|
|
|
|
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{The None Object}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyObject *}{Py_None}
|
|
|
|
macro
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
|
|
|
|
\section{Sequence Objects}
|
|
|
|
|
|
|
|
Generic operations on sequence objects were discussed in the previous
|
|
|
|
chapter; this section deals with the specific kinds of sequence
|
|
|
|
objects that are intrinsuc to the Python language.
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{String Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyStringObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python string object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyString_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python string type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyString_FromStringAndSize}{const char *, int}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyString_FromString}{const char *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyString_Size}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{char *}{PyString_AsString}{PyObject *}
|
|
|
|
|
1997-05-15 21:43:21 +00:00
|
|
|
\end{cfuncdesc}
|
|
|
|
|
1997-05-22 20:11:52 +00:00
|
|
|
\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **, PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **, PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **, int}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyString_Format}{PyObject *, PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyString_InternFromString}{const char *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{char *}{PyString_AS_STRING}{PyStringObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyString_GET_SIZE}{PyStringObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Tuple Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyTupleObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python tuple object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python tuple type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
|
|
|
|
Return true if the argument is a tuple object.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyTupleObject *}{PyTuple_New}{int s}
|
|
|
|
Return a new tuple object of size \code{s}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyTuple_Size}{PyTupleObject *p}
|
|
|
|
akes a pointer to a tuple object, and returns the size
|
|
|
|
of that tuple.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyTuple_GetItem}{PyTupleObject *p, int pos}
|
|
|
|
returns the object at position \code{pos} in the tuple pointed
|
|
|
|
to by \code{p}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyTuple_GET_ITEM}{PyTupleObject *p, int pos}
|
|
|
|
does the same, but does no checking of it's
|
|
|
|
arguments.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyTupleObject *}{PyTuple_GetSlice}{PyTupleObject *p,
|
|
|
|
int low,
|
|
|
|
int high}
|
|
|
|
takes a slice of the tuple pointed to by \code{p} from
|
|
|
|
\code{low} to \code{high} and returns it as a new tuple.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyTupleObject *p,
|
|
|
|
int pos,
|
|
|
|
PyObject *o}
|
|
|
|
inserts a reference to object \code{o} at position \code{pos} of
|
|
|
|
the tuple pointed to by \code{p}. It returns 0 on success.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyTupleObject *p,
|
|
|
|
int pos,
|
|
|
|
PyObject *o}
|
|
|
|
|
|
|
|
does the same, but does no error checking, and
|
|
|
|
should \emph{only} be used to fill in brand new tuples.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyTupleObject *}{_PyTuple_Resize}{PyTupleObject *p,
|
|
|
|
int new,
|
|
|
|
int last_is_sticky}
|
|
|
|
can be used to resize a tuple. Because tuples are
|
|
|
|
\emph{supposed} to be immutable, this should only be used if there is only
|
|
|
|
one module referencing the object. Do \emph{not} use this if the tuple may
|
|
|
|
already be known to some other part of the code. \code{last_is_sticky} is
|
|
|
|
a flag - if set, the tuple will grow or shrink at the front, otherwise
|
|
|
|
it will grow or shrink at the end. Think of this as destroying the old
|
|
|
|
tuple and creating a new one, only more efficiently.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{List Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyListObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python list object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyList_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python list type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
|
|
|
|
returns true if it's argument is a \code{PyListObject}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyList_New}{int size}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_Size}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyList_GetItem}{PyObject *, int}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *, int, PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *, int, PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_Append}{PyObject *, PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyList_GetSlice}{PyObject *, int, int}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *, int, int, PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyList_AsTuple}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyList_GET_ITEM}{PyObject *list, int i}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyList_GET_SIZE}{PyObject *list}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\section{Mapping Objects}
|
|
|
|
|
|
|
|
\subsection{Dictionary Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyDictObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python dictionary object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyDict_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python dictionary type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
|
|
|
|
returns true if it's argument is a PyDictObject
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyDictObject *}{PyDict_New}{}
|
|
|
|
returns a new empty dictionary.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyDict_Clear}{PyDictObject *p}
|
|
|
|
empties an existing dictionary and deletes it.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyDict_SetItem}{PyDictObject *p,
|
|
|
|
PyObject *key,
|
|
|
|
PyObject *val}
|
|
|
|
inserts \code{value} into the dictionary with a key of
|
|
|
|
\code{key}. Both \code{key} and \code{value} should be PyObjects, and \code{key} should
|
|
|
|
be hashable.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyDictObject *p,
|
|
|
|
char *key,
|
|
|
|
PyObject *val}
|
|
|
|
inserts \code{value} into the dictionary using \code{key}
|
|
|
|
as a key. \code{key} should be a char *
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyDict_DelItem}{PyDictObject *p, PyObject *key}
|
|
|
|
removes the entry in dictionary \code{p} with key \code{key}.
|
|
|
|
\code{key} is a PyObject.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyDictObject *p, char *key}
|
|
|
|
removes the entry in dictionary \code{p} which has a key
|
|
|
|
specified by the \code{char *}\code{key}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyDict_GetItem}{PyDictObject *p, PyObject *key}
|
|
|
|
returns the object from dictionary \code{p} which has a key
|
|
|
|
\code{key}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyDict_GetItemString}{PyDictObject *p, char *key}
|
|
|
|
does the same, but \code{key} is specified as a
|
|
|
|
\code{char *}, rather than a \code{PyObject *}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyListObject *}{PyDict_Items}{PyDictObject *p}
|
|
|
|
returns a PyListObject containing all the items
|
|
|
|
from the dictionary, as in the mapping method \code{items()} (see the Reference
|
|
|
|
Guide)
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyListObject *}{PyDict_Keys}{PyDictObject *p}
|
|
|
|
returns a PyListObject containing all the keys
|
|
|
|
from the dictionary, as in the mapping method \code{keys()} (see the Reference Guide)
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyListObject *}{PyDict_Values}{PyDictObject *p}
|
|
|
|
returns a PyListObject containing all the values
|
|
|
|
from the dictionary, as in the mapping method \code{values()} (see the Reference Guide)
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyDict_Size}{PyDictObject *p}
|
|
|
|
returns the number of items in the dictionary.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyDict_Next}{PyDictObject *p,
|
|
|
|
int ppos,
|
|
|
|
PyObject **pkey,
|
|
|
|
PyObject **pvalue}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\section{Numeric Objects}
|
|
|
|
|
|
|
|
\subsection{Plain Integer Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyIntObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python integer object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyInt_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python plain
|
|
|
|
integer type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyIntObject *}{PyInt_FromLong}{long ival}
|
|
|
|
creates a new integer object with a value of \code{ival}.
|
|
|
|
|
|
|
|
The current implementation keeps an array of integer objects for all
|
|
|
|
integers between -1 and 100, when you create an int in that range you
|
|
|
|
actually just get back a reference to the existing object. So it should
|
|
|
|
be possible to change the value of 1. I suspect the behaviour of python
|
|
|
|
in this case is undefined. :-)
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyIntObject *io}
|
|
|
|
returns the value of the object \code{io}.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
|
|
|
|
will first attempt to cast the object to a PyIntObject, if
|
|
|
|
it is not already one, and the return it's value.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{long}{PyInt_GetMax}{}
|
|
|
|
returns the systems idea of the largest int it can handle
|
|
|
|
(LONG_MAX, as defined in the system header files)
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Long Integer Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyLongObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python long integer object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyLong_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python long integer type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
|
|
|
|
returns true if it's argument is a \code{PyLongObject}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyLong_FromLong}{long}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyLong_FromUnsignedLong}{unsigned long}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyLong_FromDouble}{double}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject }
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{*PyLong_FromString}{char *, char **, int}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Floating Point Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyFloatObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python floating point object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python floating
|
|
|
|
point type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
|
|
|
|
returns true if it's argument is a \code{PyFloatObject}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyFloat_FromDouble}{double}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyFloatObject *}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Complex Number Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{Py_complex}
|
|
|
|
typedef struct {
|
|
|
|
double real;
|
|
|
|
double imag;
|
|
|
|
}
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyComplexObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python complex number object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python complex
|
|
|
|
number type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
|
|
|
|
returns true if it's argument is a \code{PyComplexObject}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex, Py_complex}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex, Py_complex}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex, Py_complex}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex, Py_complex}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex, Py_complex}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyComplex_FromCComplex}{Py_complex}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyComplex_FromDoubles}{double real, double imag}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
|
|
|
|
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{Other Objects}
|
|
|
|
|
|
|
|
\subsection{File Objects}
|
|
|
|
|
|
|
|
\begin{ctypedesc}{PyFileObject}
|
|
|
|
This subtype of \code{PyObject} represents a Python file object.
|
|
|
|
\end{ctypedesc}
|
|
|
|
|
|
|
|
\begin{cvardesc}{PyTypeObject}{PyFile_Type}
|
|
|
|
This instance of \code{PyTypeObject} represents the Python file type.
|
|
|
|
\end{cvardesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
|
|
|
|
returns true if it's argument is a \code{PyFileObject}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyFile_FromString}{char *name, char *mode}
|
|
|
|
creates a new PyFileObject pointing to the file
|
|
|
|
specified in \code{name} with the mode specified in \code{mode}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyObject *}{PyFile_FromFile}{FILE *fp,
|
|
|
|
char *name, char *mode, int (*close})
|
|
|
|
creates a new PyFileObject from the already-open \code{fp}.
|
|
|
|
The function \code{close} will be called when the file should be closed.
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{FILE *}{PyFile_AsFile}{PyFileObject *p}
|
|
|
|
returns the file object associated with \code{p} as a \code{FILE *}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyStringObject *}{PyFile_GetLine}{PyObject *p, int n}
|
|
|
|
undocumented as yet
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{PyStringObject *}{PyFile_Name}{PyObject *p}
|
|
|
|
returns the name of the file specified by \code{p} as a
|
|
|
|
PyStringObject
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
|
|
|
|
on systems with \code{setvbuf} only
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyFileObject *p, int newflag}
|
|
|
|
same as the file object method \code{softspace}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyFileObject *p}
|
|
|
|
writes object \code{obj} to file object \code{p}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
\begin{cfuncdesc}{int}{PyFile_WriteString}{char *s, PyFileObject *p}
|
|
|
|
writes string \code{s} to file object \code{p}
|
|
|
|
\end{cfuncdesc}
|
|
|
|
|
|
|
|
|
1997-05-15 21:43:21 +00:00
|
|
|
\input{api.ind} % Index -- must be last
|
|
|
|
|
|
|
|
\end{document}
|