cpython/Objects/funcobject.c

802 lines
19 KiB
C
Raw Normal View History

1991-02-19 12:39:46 +00:00
1990-10-14 12:07:46 +00:00
/* Function object implementation */
1997-05-02 03:12:38 +00:00
#include "Python.h"
#include "compile.h"
2001-08-02 04:15:00 +00:00
#include "eval.h"
1990-12-20 15:06:42 +00:00
#include "structmember.h"
1990-10-14 12:07:46 +00:00
1997-05-02 03:12:38 +00:00
PyObject *
2000-07-09 06:03:25 +00:00
PyFunction_New(PyObject *code, PyObject *globals)
1990-10-14 12:07:46 +00:00
{
2001-08-29 23:54:21 +00:00
PyFunctionObject *op = PyObject_GC_New(PyFunctionObject,
1997-05-02 03:12:38 +00:00
&PyFunction_Type);
1990-10-14 12:07:46 +00:00
if (op != NULL) {
1997-05-02 03:12:38 +00:00
PyObject *doc;
PyObject *consts;
op->func_weakreflist = NULL;
1997-05-02 03:12:38 +00:00
Py_INCREF(code);
op->func_code = code;
1997-05-02 03:12:38 +00:00
Py_INCREF(globals);
1990-10-14 12:07:46 +00:00
op->func_globals = globals;
1997-05-02 03:12:38 +00:00
op->func_name = ((PyCodeObject *)code)->co_name;
Py_INCREF(op->func_name);
op->func_defaults = NULL; /* No default arguments */
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 20:06:59 +00:00
op->func_closure = NULL;
1997-05-02 03:12:38 +00:00
consts = ((PyCodeObject *)code)->co_consts;
if (PyTuple_Size(consts) >= 1) {
doc = PyTuple_GetItem(consts, 0);
if (!PyString_Check(doc) && !PyUnicode_Check(doc))
1997-05-02 03:12:38 +00:00
doc = Py_None;
}
else
1997-05-02 03:12:38 +00:00
doc = Py_None;
Py_INCREF(doc);
op->func_doc = doc;
op->func_dict = NULL;
1990-10-14 12:07:46 +00:00
}
else
return NULL;
2001-08-29 23:54:21 +00:00
_PyObject_GC_TRACK(op);
1997-05-02 03:12:38 +00:00
return (PyObject *)op;
1990-10-14 12:07:46 +00:00
}
1997-05-02 03:12:38 +00:00
PyObject *
2000-07-09 06:03:25 +00:00
PyFunction_GetCode(PyObject *op)
1990-10-14 12:07:46 +00:00
{
1997-05-02 03:12:38 +00:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1990-10-14 12:07:46 +00:00
return NULL;
}
1997-05-02 03:12:38 +00:00
return ((PyFunctionObject *) op) -> func_code;
1990-10-14 12:07:46 +00:00
}
1997-05-02 03:12:38 +00:00
PyObject *
2000-07-09 06:03:25 +00:00
PyFunction_GetGlobals(PyObject *op)
1990-10-14 12:07:46 +00:00
{
1997-05-02 03:12:38 +00:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1990-10-14 12:07:46 +00:00
return NULL;
}
1997-05-02 03:12:38 +00:00
return ((PyFunctionObject *) op) -> func_globals;
1990-10-14 12:07:46 +00:00
}
1997-05-02 03:12:38 +00:00
PyObject *
2000-07-09 06:03:25 +00:00
PyFunction_GetDefaults(PyObject *op)
1994-08-30 08:27:36 +00:00
{
1997-05-02 03:12:38 +00:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1994-08-30 08:27:36 +00:00
return NULL;
}
1997-05-02 03:12:38 +00:00
return ((PyFunctionObject *) op) -> func_defaults;
1994-08-30 08:27:36 +00:00
}
int
2000-07-09 06:03:25 +00:00
PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
1994-08-30 08:27:36 +00:00
{
1997-05-02 03:12:38 +00:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1994-08-30 08:27:36 +00:00
return -1;
}
1997-05-02 03:12:38 +00:00
if (defaults == Py_None)
defaults = NULL;
1998-04-10 22:16:39 +00:00
else if (PyTuple_Check(defaults)) {
1997-05-02 03:12:38 +00:00
Py_XINCREF(defaults);
1998-04-10 22:16:39 +00:00
}
1994-08-30 08:27:36 +00:00
else {
1997-05-02 03:12:38 +00:00
PyErr_SetString(PyExc_SystemError, "non-tuple default args");
1994-08-30 08:27:36 +00:00
return -1;
}
1997-05-02 03:12:38 +00:00
Py_XDECREF(((PyFunctionObject *) op) -> func_defaults);
((PyFunctionObject *) op) -> func_defaults = defaults;
1994-08-30 08:27:36 +00:00
return 0;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 20:06:59 +00:00
PyObject *
PyFunction_GetClosure(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_closure;
}
int
PyFunction_SetClosure(PyObject *op, PyObject *closure)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
if (closure == Py_None)
closure = NULL;
else if (PyTuple_Check(closure)) {
Py_XINCREF(closure);
}
else {
PyErr_SetString(PyExc_SystemError, "non-tuple closure");
return -1;
}
Py_XDECREF(((PyFunctionObject *) op) -> func_closure);
((PyFunctionObject *) op) -> func_closure = closure;
return 0;
}
1990-10-14 12:07:46 +00:00
/* Methods */
1997-05-02 03:12:38 +00:00
#define OFF(x) offsetof(PyFunctionObject, x)
1990-12-20 15:06:42 +00:00
#define RR ()
static PyMemberDef func_memberlist[] = {
{"func_closure", T_OBJECT, OFF(func_closure),
RESTRICTED|READONLY},
{"func_doc", T_OBJECT, OFF(func_doc), WRITE_RESTRICTED},
{"__doc__", T_OBJECT, OFF(func_doc), WRITE_RESTRICTED},
{"func_globals", T_OBJECT, OFF(func_globals),
RESTRICTED|READONLY},
{"func_name", T_OBJECT, OFF(func_name), READONLY},
{"__name__", T_OBJECT, OFF(func_name), READONLY},
{NULL} /* Sentinel */
1990-12-20 15:06:42 +00:00
};
static int
restricted(void)
{
if (!PyEval_GetRestricted())
return 0;
PyErr_SetString(PyExc_RuntimeError,
"function attributes not accessible in restricted mode");
return 1;
}
1997-05-02 03:12:38 +00:00
static PyObject *
func_get_dict(PyFunctionObject *op)
1990-12-20 15:06:42 +00:00
{
if (restricted())
1995-01-10 10:39:49 +00:00
return NULL;
if (op->func_dict == NULL) {
op->func_dict = PyDict_New();
if (op->func_dict == NULL)
return NULL;
}
Py_INCREF(op->func_dict);
return op->func_dict;
1990-12-20 15:06:42 +00:00
}
static int
func_set_dict(PyFunctionObject *op, PyObject *value)
{
PyObject *tmp;
if (restricted())
return -1;
/* It is illegal to del f.func_dict */
if (value == NULL) {
PyErr_SetString(PyExc_TypeError,
"function's dictionary may not be deleted");
return -1;
}
/* Can only set func_dict to a dictionary */
if (!PyDict_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"setting function's dictionary to a non-dict");
return -1;
}
tmp = op->func_dict;
Py_INCREF(value);
op->func_dict = value;
Py_XDECREF(tmp);
return 0;
}
static PyObject *
func_get_code(PyFunctionObject *op)
{
if (restricted())
return NULL;
Py_INCREF(op->func_code);
return op->func_code;
}
static int
func_set_code(PyFunctionObject *op, PyObject *value)
{
PyObject *tmp;
if (restricted())
return -1;
/* Not legal to del f.func_code or to set it to anything
* other than a code object. */
if (value == NULL || !PyCode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"func_code must be set to a code object");
return -1;
}
tmp = op->func_code;
Py_INCREF(value);
op->func_code = value;
Py_DECREF(tmp);
return 0;
}
static PyObject *
func_get_defaults(PyFunctionObject *op)
{
if (restricted())
return NULL;
if (op->func_defaults == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
Py_INCREF(op->func_defaults);
return op->func_defaults;
}
static int
func_set_defaults(PyFunctionObject *op, PyObject *value)
{
PyObject *tmp;
if (restricted())
return -1;
/* Legal to del f.func_defaults.
* Can only set func_defaults to NULL or a tuple. */
if (value == Py_None)
value = NULL;
if (value != NULL && !PyTuple_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"func_defaults must be set to a tuple object");
return -1;
}
tmp = op->func_defaults;
Py_XINCREF(value);
op->func_defaults = value;
Py_XDECREF(tmp);
return 0;
}
static PyGetSetDef func_getsetlist[] = {
{"func_code", (getter)func_get_code, (setter)func_set_code},
{"func_defaults", (getter)func_get_defaults,
(setter)func_set_defaults},
{"func_dict", (getter)func_get_dict, (setter)func_set_dict},
{"__dict__", (getter)func_get_dict, (setter)func_set_dict},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(func_doc,
"function(code, globals[, name[, argdefs[, closure]]])\n\
\n\
Create a function object from a code object and a dictionary.\n\
The optional name string overrides the name from the code object.\n\
The optional argdefs tuple specifies the default argument values.\n\
The optional closure tuple supplies the bindings for free variables.");
/* func_new() maintains the following invariants for closures. The
closure must correspond to the free variables of the code object.
if len(code.co_freevars) == 0:
closure = NULL
else:
len(closure) == len(code.co_freevars)
for every elt in closure, type(elt) == cell
*/
static PyObject *
func_new(PyTypeObject* type, PyObject* args, PyObject* kw)
{
PyCodeObject *code;
PyObject *globals;
PyObject *name = Py_None;
PyObject *defaults = Py_None;
PyObject *closure = Py_None;
PyFunctionObject *newfunc;
int nfree, nclosure;
if (!PyArg_ParseTuple(args, "O!O!|OOO:function",
&PyCode_Type, &code,
&PyDict_Type, &globals,
&name, &defaults, &closure))
return NULL;
if (name != Py_None && !PyString_Check(name)) {
PyErr_SetString(PyExc_TypeError,
"arg 3 (name) must be None or string");
return NULL;
}
if (defaults != Py_None && !PyTuple_Check(defaults)) {
PyErr_SetString(PyExc_TypeError,
"arg 4 (defaults) must be None or tuple");
return NULL;
}
nfree = PyTuple_GET_SIZE(code->co_freevars);
if (!PyTuple_Check(closure)) {
if (nfree && closure == Py_None) {
PyErr_SetString(PyExc_TypeError,
"arg 5 (closure) must be tuple");
return NULL;
}
else if (closure != Py_None) {
PyErr_SetString(PyExc_TypeError,
"arg 5 (closure) must be None or tuple");
return NULL;
}
}
/* check that the closure is well-formed */
nclosure = closure == Py_None ? 0 : PyTuple_GET_SIZE(closure);
if (nfree != nclosure)
return PyErr_Format(PyExc_ValueError,
"%s requires closure of length %d, not %d",
PyString_AS_STRING(code->co_name),
nfree, nclosure);
if (nclosure) {
int i;
for (i = 0; i < nclosure; i++) {
PyObject *o = PyTuple_GET_ITEM(closure, i);
if (!PyCell_Check(o)) {
return PyErr_Format(PyExc_TypeError,
"arg 5 (closure) expected cell, found %s",
o->ob_type->tp_name);
}
}
}
newfunc = (PyFunctionObject *)PyFunction_New((PyObject *)code,
globals);
if (newfunc == NULL)
return NULL;
if (name != Py_None) {
Py_INCREF(name);
Py_DECREF(newfunc->func_name);
newfunc->func_name = name;
}
if (defaults != Py_None) {
Py_INCREF(defaults);
newfunc->func_defaults = defaults;
}
if (closure != Py_None) {
Py_INCREF(closure);
newfunc->func_closure = closure;
}
return (PyObject *)newfunc;
}
1990-10-14 12:07:46 +00:00
static void
2000-07-09 06:03:25 +00:00
func_dealloc(PyFunctionObject *op)
1990-10-14 12:07:46 +00:00
{
2001-08-29 23:54:21 +00:00
_PyObject_GC_UNTRACK(op);
if (op->func_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) op);
1997-05-02 03:12:38 +00:00
Py_DECREF(op->func_code);
Py_DECREF(op->func_globals);
Py_DECREF(op->func_name);
Py_XDECREF(op->func_defaults);
Py_XDECREF(op->func_doc);
Py_XDECREF(op->func_dict);
Py_XDECREF(op->func_closure);
2001-08-29 23:54:21 +00:00
PyObject_GC_Del(op);
1990-10-14 12:07:46 +00:00
}
1997-05-02 03:12:38 +00:00
static PyObject*
2000-07-09 06:03:25 +00:00
func_repr(PyFunctionObject *op)
{
1997-05-02 03:12:38 +00:00
if (op->func_name == Py_None)
return PyString_FromFormat("<anonymous function at %p>", op);
return PyString_FromFormat("<function %s at %p>",
PyString_AsString(op->func_name),
op);
}
static int
func_traverse(PyFunctionObject *f, visitproc visit, void *arg)
{
int err;
if (f->func_code) {
err = visit(f->func_code, arg);
if (err)
return err;
}
if (f->func_globals) {
err = visit(f->func_globals, arg);
if (err)
return err;
}
if (f->func_defaults) {
err = visit(f->func_defaults, arg);
if (err)
return err;
}
if (f->func_doc) {
err = visit(f->func_doc, arg);
if (err)
return err;
}
if (f->func_name) {
err = visit(f->func_name, arg);
if (err)
return err;
}
if (f->func_dict) {
err = visit(f->func_dict, arg);
if (err)
return err;
}
if (f->func_closure) {
err = visit(f->func_closure, arg);
if (err)
return err;
}
return 0;
}
2001-08-02 04:15:00 +00:00
static PyObject *
function_call(PyObject *func, PyObject *arg, PyObject *kw)
{
PyObject *result;
PyObject *argdefs;
PyObject **d, **k;
int nk, nd;
argdefs = PyFunction_GET_DEFAULTS(func);
if (argdefs != NULL && PyTuple_Check(argdefs)) {
d = &PyTuple_GET_ITEM((PyTupleObject *)argdefs, 0);
nd = PyTuple_Size(argdefs);
}
else {
d = NULL;
nd = 0;
}
if (kw != NULL && PyDict_Check(kw)) {
int pos, i;
nk = PyDict_Size(kw);
k = PyMem_NEW(PyObject *, 2*nk);
if (k == NULL) {
PyErr_NoMemory();
return NULL;
}
pos = i = 0;
while (PyDict_Next(kw, &pos, &k[i], &k[i+1]))
i += 2;
nk = i/2;
/* XXX This is broken if the caller deletes dict items! */
}
else {
k = NULL;
nk = 0;
}
result = PyEval_EvalCodeEx(
(PyCodeObject *)PyFunction_GET_CODE(func),
PyFunction_GET_GLOBALS(func), (PyObject *)NULL,
&PyTuple_GET_ITEM(arg, 0), PyTuple_Size(arg),
k, nk, d, nd,
PyFunction_GET_CLOSURE(func));
if (k != NULL)
PyMem_DEL(k);
return result;
}
/* Bind a function to an object */
static PyObject *
func_descr_get(PyObject *func, PyObject *obj, PyObject *type)
{
if (obj == Py_None)
obj = NULL;
return PyMethod_New(func, obj, type);
}
1997-05-02 03:12:38 +00:00
PyTypeObject PyFunction_Type = {
PyObject_HEAD_INIT(&PyType_Type)
1990-10-14 12:07:46 +00:00
0,
"function",
2001-08-29 23:54:21 +00:00
sizeof(PyFunctionObject),
1990-10-14 12:07:46 +00:00
0,
2001-08-02 04:15:00 +00:00
(destructor)func_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)func_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
function_call, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
2001-08-02 04:15:00 +00:00
0, /* tp_as_buffer */
2001-08-29 23:54:21 +00:00
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
func_doc, /* tp_doc */
2001-08-02 04:15:00 +00:00
(traverseproc)func_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyFunctionObject, func_weakreflist), /* tp_weaklistoffset */
2001-08-02 04:15:00 +00:00
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
func_memberlist, /* tp_members */
func_getsetlist, /* tp_getset */
2001-08-02 04:15:00 +00:00
0, /* tp_base */
0, /* tp_dict */
func_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(PyFunctionObject, func_dict), /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
func_new, /* tp_new */
2001-08-02 04:15:00 +00:00
};
/* Class method object */
/* A class method receives the class as implicit first argument,
just like an instance method receives the instance.
To declare a class method, use this idiom:
class C:
def f(cls, arg1, arg2, ...): ...
f = classmethod(f)
It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()); the instance is ignored except for its class.
If a class method is called for a derived class, the derived class
object is passed as the implied first argument.
Class methods are different than C++ or Java static methods.
If you want those, see static methods below.
*/
typedef struct {
PyObject_HEAD
PyObject *cm_callable;
} classmethod;
static void
cm_dealloc(classmethod *cm)
{
Py_XDECREF(cm->cm_callable);
cm->ob_type->tp_free((PyObject *)cm);
2001-08-02 04:15:00 +00:00
}
static PyObject *
cm_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
classmethod *cm = (classmethod *)self;
if (cm->cm_callable == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"uninitialized classmethod object");
return NULL;
}
if (type == NULL)
type = (PyObject *)(obj->ob_type);
2001-08-02 04:15:00 +00:00
return PyMethod_New(cm->cm_callable,
type, (PyObject *)(type->ob_type));
}
static int
cm_init(PyObject *self, PyObject *args, PyObject *kwds)
{
classmethod *cm = (classmethod *)self;
PyObject *callable;
if (!PyArg_UnpackTuple(args, "classmethod", 1, 1, &callable))
2001-08-02 04:15:00 +00:00
return -1;
Py_INCREF(callable);
cm->cm_callable = callable;
return 0;
}
2002-06-13 20:33:02 +00:00
PyDoc_STRVAR(classmethod_doc,
"classmethod(function) -> method\n\
\n\
Convert a function to be a class method.\n\
\n\
A class method receives the class as implicit first argument,\n\
just like an instance method receives the instance.\n\
To declare a class method, use this idiom:\n\
\n\
class C:\n\
def f(cls, arg1, arg2, ...): ...\n\
f = classmethod(f)\n\
\n\
It can be called either on the class (e.g. C.f()) or on an instance\n\
(e.g. C().f()). The instance is ignored except for its class.\n\
If a class method is called for a derived class, the derived class\n\
object is passed as the implied first argument.\n\
\n\
Class methods are different than C++ or Java static methods.\n\
2002-06-13 20:33:02 +00:00
If you want those, see the staticmethod builtin.");
2001-08-02 04:15:00 +00:00
PyTypeObject PyClassMethod_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"classmethod",
sizeof(classmethod),
0,
(destructor)cm_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
classmethod_doc, /* tp_doc */
2001-08-02 04:15:00 +00:00
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
cm_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
cm_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_Del, /* tp_free */
2001-08-02 04:15:00 +00:00
};
PyObject *
PyClassMethod_New(PyObject *callable)
{
classmethod *cm = (classmethod *)
PyType_GenericAlloc(&PyClassMethod_Type, 0);
if (cm != NULL) {
Py_INCREF(callable);
cm->cm_callable = callable;
}
return (PyObject *)cm;
}
/* Static method object */
/* A static method does not receive an implicit first argument.
To declare a static method, use this idiom:
class C:
def f(arg1, arg2, ...): ...
f = staticmethod(f)
It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()); the instance is ignored except for its class.
Static methods in Python are similar to those found in Java or C++.
For a more advanced concept, see class methods above.
*/
typedef struct {
PyObject_HEAD
PyObject *sm_callable;
} staticmethod;
static void
sm_dealloc(staticmethod *sm)
{
Py_XDECREF(sm->sm_callable);
sm->ob_type->tp_free((PyObject *)sm);
2001-08-02 04:15:00 +00:00
}
static PyObject *
sm_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
staticmethod *sm = (staticmethod *)self;
if (sm->sm_callable == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"uninitialized staticmethod object");
return NULL;
}
Py_INCREF(sm->sm_callable);
return sm->sm_callable;
}
static int
sm_init(PyObject *self, PyObject *args, PyObject *kwds)
{
staticmethod *sm = (staticmethod *)self;
PyObject *callable;
if (!PyArg_UnpackTuple(args, "staticmethod", 1, 1, &callable))
2001-08-02 04:15:00 +00:00
return -1;
Py_INCREF(callable);
sm->sm_callable = callable;
return 0;
}
2002-06-13 20:33:02 +00:00
PyDoc_STRVAR(staticmethod_doc,
"staticmethod(function) -> method\n\
\n\
Convert a function to be a static method.\n\
\n\
A static method does not receive an implicit first argument.\n\
To declare a static method, use this idiom:\n\
\n\
class C:\n\
def f(arg1, arg2, ...): ...\n\
f = staticmethod(f)\n\
\n\
It can be called either on the class (e.g. C.f()) or on an instance\n\
(e.g. C().f()). The instance is ignored except for its class.\n\
\n\
Static methods in Python are similar to those found in Java or C++.\n\
2002-06-13 20:33:02 +00:00
For a more advanced concept, see the classmethod builtin.");
2001-08-02 04:15:00 +00:00
PyTypeObject PyStaticMethod_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"staticmethod",
sizeof(staticmethod),
0,
(destructor)sm_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
staticmethod_doc, /* tp_doc */
2001-08-02 04:15:00 +00:00
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
sm_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
sm_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_Del, /* tp_free */
1990-10-14 12:07:46 +00:00
};
2001-08-02 04:15:00 +00:00
PyObject *
PyStaticMethod_New(PyObject *callable)
{
staticmethod *sm = (staticmethod *)
PyType_GenericAlloc(&PyStaticMethod_Type, 0);
if (sm != NULL) {
Py_INCREF(callable);
sm->sm_callable = callable;
}
return (PyObject *)sm;
}