cpython/Objects/abstract.c

1846 lines
37 KiB
C
Raw Normal View History

1995-07-18 14:12:02 +00:00
/* Abstract Object Interface (many thanks to Jim Fulton) */
1995-07-18 14:12:02 +00:00
#include "Python.h"
#include <ctype.h>
#include "structmember.h" /* we need the offsetof() macro from there */
#define NEW_STYLE_NUMBER(o) PyType_HasFeature((o)->ob_type, \
Py_TPFLAGS_CHECKTYPES)
1995-07-18 14:12:02 +00:00
/* Shorthands to return certain errors */
1995-07-18 14:12:02 +00:00
static PyObject *
type_error(const char *msg)
1995-07-18 14:12:02 +00:00
{
PyErr_SetString(PyExc_TypeError, msg);
return NULL;
1995-07-18 14:12:02 +00:00
}
static PyObject *
2000-07-09 04:06:11 +00:00
null_error(void)
1995-07-18 14:12:02 +00:00
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_SystemError,
"null argument to internal routine");
return NULL;
1995-07-18 14:12:02 +00:00
}
/* Operations on any object */
1995-07-18 14:12:02 +00:00
int
2000-07-09 04:06:11 +00:00
PyObject_Cmp(PyObject *o1, PyObject *o2, int *result)
1995-07-18 14:12:02 +00:00
{
int r;
if (o1 == NULL || o2 == NULL) {
null_error();
return -1;
1995-07-18 14:12:02 +00:00
}
r = PyObject_Compare(o1, o2);
if (PyErr_Occurred())
return -1;
*result = r;
1995-07-18 14:12:02 +00:00
return 0;
}
PyObject *
2000-07-09 04:06:11 +00:00
PyObject_Type(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyObject *v;
if (o == NULL)
return null_error();
1995-07-18 14:12:02 +00:00
v = (PyObject *)o->ob_type;
Py_INCREF(v);
return v;
}
int
PyObject_Size(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
1995-07-18 14:12:02 +00:00
if (o == NULL) {
null_error();
return -1;
}
1995-07-18 14:12:02 +00:00
m = o->ob_type->tp_as_sequence;
if (m && m->sq_length)
return m->sq_length(o);
1995-07-18 14:12:02 +00:00
return PyMapping_Size(o);
1995-07-18 14:12:02 +00:00
}
#undef PyObject_Length
int
PyObject_Length(PyObject *o)
{
return PyObject_Size(o);
}
#define PyObject_Length PyObject_Size
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PyObject_GetItem(PyObject *o, PyObject *key)
1995-07-18 14:12:02 +00:00
{
PyMappingMethods *m;
1995-07-18 14:12:02 +00:00
if (o == NULL || key == NULL)
return null_error();
1995-07-18 14:12:02 +00:00
m = o->ob_type->tp_as_mapping;
if (m && m->mp_subscript)
return m->mp_subscript(o, key);
1995-07-18 14:12:02 +00:00
if (o->ob_type->tp_as_sequence) {
if (PyInt_Check(key))
return PySequence_GetItem(o, PyInt_AsLong(key));
else if (PyLong_Check(key)) {
long key_value = PyLong_AsLong(key);
if (key_value == -1 && PyErr_Occurred())
return NULL;
return PySequence_GetItem(o, key_value);
}
return type_error("sequence index must be integer");
}
return type_error("unsubscriptable object");
1995-07-18 14:12:02 +00:00
}
int
2000-07-09 04:06:11 +00:00
PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value)
1995-07-18 14:12:02 +00:00
{
PyMappingMethods *m;
1995-07-18 14:12:02 +00:00
if (o == NULL || key == NULL || value == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_ass_subscript)
return m->mp_ass_subscript(o, key, value);
if (o->ob_type->tp_as_sequence) {
if (PyInt_Check(key))
return PySequence_SetItem(o, PyInt_AsLong(key), value);
else if (PyLong_Check(key)) {
long key_value = PyLong_AsLong(key);
if (key_value == -1 && PyErr_Occurred())
return -1;
return PySequence_SetItem(o, key_value, value);
}
type_error("sequence index must be integer");
return -1;
}
1995-07-18 14:12:02 +00:00
type_error("object does not support item assignment");
return -1;
1995-07-18 14:12:02 +00:00
}
int
2000-07-09 04:06:11 +00:00
PyObject_DelItem(PyObject *o, PyObject *key)
{
PyMappingMethods *m;
if (o == NULL || key == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_ass_subscript)
return m->mp_ass_subscript(o, key, (PyObject*)NULL);
if (o->ob_type->tp_as_sequence) {
if (PyInt_Check(key))
return PySequence_DelItem(o, PyInt_AsLong(key));
else if (PyLong_Check(key)) {
long key_value = PyLong_AsLong(key);
if (key_value == -1 && PyErr_Occurred())
return -1;
return PySequence_DelItem(o, key_value);
}
type_error("sequence index must be integer");
return -1;
}
type_error("object does not support item deletion");
return -1;
}
int PyObject_AsCharBuffer(PyObject *obj,
const char **buffer,
int *buffer_len)
{
PyBufferProcs *pb;
const char *pp;
int len;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
null_error();
return -1;
}
pb = obj->ob_type->tp_as_buffer;
if ( pb == NULL ||
pb->bf_getcharbuffer == NULL ||
pb->bf_getsegcount == NULL ) {
PyErr_SetString(PyExc_TypeError,
"expected a character buffer object");
goto onError;
}
if ( (*pb->bf_getsegcount)(obj,NULL) != 1 ) {
PyErr_SetString(PyExc_TypeError,
"expected a single-segment buffer object");
goto onError;
}
len = (*pb->bf_getcharbuffer)(obj,0,&pp);
if (len < 0)
goto onError;
*buffer = pp;
*buffer_len = len;
return 0;
onError:
return -1;
}
int PyObject_AsReadBuffer(PyObject *obj,
const void **buffer,
int *buffer_len)
{
PyBufferProcs *pb;
void *pp;
int len;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
null_error();
return -1;
}
pb = obj->ob_type->tp_as_buffer;
if ( pb == NULL ||
pb->bf_getreadbuffer == NULL ||
pb->bf_getsegcount == NULL ) {
PyErr_SetString(PyExc_TypeError,
"expected a readable buffer object");
goto onError;
}
if ( (*pb->bf_getsegcount)(obj,NULL) != 1 ) {
PyErr_SetString(PyExc_TypeError,
"expected a single-segment buffer object");
goto onError;
}
len = (*pb->bf_getreadbuffer)(obj,0,&pp);
if (len < 0)
goto onError;
*buffer = pp;
*buffer_len = len;
return 0;
onError:
return -1;
}
int PyObject_AsWriteBuffer(PyObject *obj,
void **buffer,
int *buffer_len)
{
PyBufferProcs *pb;
void*pp;
int len;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
null_error();
return -1;
}
pb = obj->ob_type->tp_as_buffer;
if ( pb == NULL ||
pb->bf_getwritebuffer == NULL ||
pb->bf_getsegcount == NULL ) {
PyErr_SetString(PyExc_TypeError,
"expected a writeable buffer object");
goto onError;
}
if ( (*pb->bf_getsegcount)(obj,NULL) != 1 ) {
PyErr_SetString(PyExc_TypeError,
"expected a single-segment buffer object");
goto onError;
}
len = (*pb->bf_getwritebuffer)(obj,0,&pp);
if (len < 0)
goto onError;
*buffer = pp;
*buffer_len = len;
return 0;
onError:
return -1;
}
/* Operations on numbers */
int
2000-07-09 04:06:11 +00:00
PyNumber_Check(PyObject *o)
1995-07-18 14:12:02 +00:00
{
return o && o->ob_type->tp_as_number;
1995-07-18 14:12:02 +00:00
}
/* Binary operators */
1995-07-18 14:12:02 +00:00
/* New style number protocol support */
1995-07-18 14:12:02 +00:00
#define NB_SLOT(x) offsetof(PyNumberMethods, x)
#define NB_BINOP(nb_methods, slot) \
((binaryfunc*)(& ((char*)nb_methods)[slot] ))
#define NB_TERNOP(nb_methods, slot) \
((ternaryfunc*)(& ((char*)nb_methods)[slot] ))
1995-07-18 14:12:02 +00:00
/*
Calling scheme used for binary operations:
1995-07-18 14:12:02 +00:00
v w Action
-------------------------------------------------------------------
new new v.op(v,w), w.op(v,w)
new old v.op(v,w), coerce(v,w), v.op(v,w)
old new w.op(v,w), coerce(v,w), v.op(v,w)
old old coerce(v,w), v.op(v,w)
1995-07-18 14:12:02 +00:00
Legend:
-------
* new == new style number
* old == old style number
* Action indicates the order in which operations are tried until either
a valid result is produced or an error occurs.
*/
static PyObject *
binary_op1(PyObject *v, PyObject *w, const int op_slot)
{
PyObject *x;
binaryfunc *slot;
if (v->ob_type->tp_as_number != NULL && NEW_STYLE_NUMBER(v)) {
slot = NB_BINOP(v->ob_type->tp_as_number, op_slot);
if (*slot) {
x = (*slot)(v, w);
if (x != Py_NotImplemented) {
return x;
}
Py_DECREF(x); /* can't do it */
}
if (v->ob_type == w->ob_type) {
goto binop_error;
}
}
if (w->ob_type->tp_as_number != NULL && NEW_STYLE_NUMBER(w)) {
slot = NB_BINOP(w->ob_type->tp_as_number, op_slot);
if (*slot) {
x = (*slot)(v, w);
if (x != Py_NotImplemented) {
return x;
}
Py_DECREF(x); /* can't do it */
}
}
if (!NEW_STYLE_NUMBER(v) || !NEW_STYLE_NUMBER(w)) {
int err = PyNumber_CoerceEx(&v, &w);
if (err < 0) {
1995-07-18 14:12:02 +00:00
return NULL;
}
if (err == 0) {
PyNumberMethods *mv = v->ob_type->tp_as_number;
if (mv) {
slot = NB_BINOP(mv, op_slot);
if (*slot) {
PyObject *x = (*slot)(v, w);
Py_DECREF(v);
Py_DECREF(w);
return x;
}
}
/* CoerceEx incremented the reference counts */
Py_DECREF(v);
Py_DECREF(w);
}
1995-07-18 14:12:02 +00:00
}
binop_error:
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
1995-07-18 14:12:02 +00:00
}
static PyObject *
binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name)
1995-07-18 14:12:02 +00:00
{
PyObject *result = binary_op1(v, w, op_slot);
if (result == Py_NotImplemented) {
Py_DECREF(Py_NotImplemented);
PyErr_Format(PyExc_TypeError,
"unsupported operand type(s) for %s", op_name);
return NULL;
1995-07-18 14:12:02 +00:00
}
return result;
1995-07-18 14:12:02 +00:00
}
/*
Calling scheme used for ternary operations:
1995-07-18 14:12:02 +00:00
v w z Action
-------------------------------------------------------------------
new new new v.op(v,w,z), w.op(v,w,z), z.op(v,w,z)
new old new v.op(v,w,z), z.op(v,w,z), coerce(v,w,z), v.op(v,w,z)
old new new w.op(v,w,z), z.op(v,w,z), coerce(v,w,z), v.op(v,w,z)
old old new z.op(v,w,z), coerce(v,w,z), v.op(v,w,z)
new new old v.op(v,w,z), w.op(v,w,z), coerce(v,w,z), v.op(v,w,z)
new old old v.op(v,w,z), coerce(v,w,z), v.op(v,w,z)
old new old w.op(v,w,z), coerce(v,w,z), v.op(v,w,z)
old old old coerce(v,w,z), v.op(v,w,z)
1995-07-18 14:12:02 +00:00
Legend:
-------
* new == new style number
* old == old style number
* Action indicates the order in which operations are tried until either
a valid result is produced or an error occurs.
* coerce(v,w,z) actually does: coerce(v,w), coerce(v,z), coerce(w,z) and
only if z != Py_None; if z == Py_None, then it is treated as absent
variable and only coerce(v,w) is tried.
*/
static PyObject *
ternary_op(PyObject *v,
PyObject *w,
PyObject *z,
const int op_slot,
const char *op_name)
{
PyNumberMethods *mv, *mw, *mz;
register PyObject *x = NULL;
register ternaryfunc *slot;
mv = v->ob_type->tp_as_number;
if (mv != NULL && NEW_STYLE_NUMBER(v)) {
/* try v.op(v,w,z) */
slot = NB_TERNOP(mv, op_slot);
if (*slot) {
x = (*slot)(v, w, z);
if (x != Py_NotImplemented)
return x;
/* Can't do it... fall through */
Py_DECREF(x);
}
if (v->ob_type == w->ob_type &&
(z == Py_None || z->ob_type == v->ob_type)) {
goto ternary_error;
}
1995-07-18 14:12:02 +00:00
}
mw = w->ob_type->tp_as_number;
if (mw != NULL && NEW_STYLE_NUMBER(w)) {
/* try w.op(v,w,z) */
slot = NB_TERNOP(mw,op_slot);
if (*slot) {
x = (*slot)(v, w, z);
if (x != Py_NotImplemented)
return x;
/* Can't do it... fall through */
Py_DECREF(x);
}
if (NEW_STYLE_NUMBER(v) &&
(z == Py_None || z->ob_type == v->ob_type)) {
goto ternary_error;
}
1995-07-18 14:12:02 +00:00
}
mz = z->ob_type->tp_as_number;
if (mz != NULL && NEW_STYLE_NUMBER(z)) {
/* try: z.op(v,w,z) */
slot = NB_TERNOP(mz, op_slot);
if (*slot) {
x = (*slot)(v, w, z);
if (x != Py_NotImplemented)
return x;
/* Can't do it... fall through */
Py_DECREF(x);
}
}
if (!NEW_STYLE_NUMBER(v) || !NEW_STYLE_NUMBER(w) ||
(z != Py_None && !NEW_STYLE_NUMBER(z))) {
/* we have an old style operand, coerce */
PyObject *v1, *z1, *w2, *z2;
int c;
c = PyNumber_Coerce(&v, &w);
if (c != 0)
goto error3;
/* Special case: if the third argument is None, it is
treated as absent argument and not coerced. */
if (z == Py_None) {
if (v->ob_type->tp_as_number) {
slot = NB_TERNOP(v->ob_type->tp_as_number,
op_slot);
if (*slot)
x = (*slot)(v, w, z);
else
c = -1;
}
else
c = -1;
goto error2;
}
v1 = v;
z1 = z;
c = PyNumber_Coerce(&v1, &z1);
if (c != 0)
goto error2;
w2 = w;
z2 = z1;
c = PyNumber_Coerce(&w2, &z2);
if (c != 0)
goto error1;
if (v1->ob_type->tp_as_number != NULL) {
slot = NB_TERNOP(v1->ob_type->tp_as_number,
op_slot);
if (*slot)
x = (*slot)(v1, w2, z2);
else
c = -1;
}
else
c = -1;
Py_DECREF(w2);
Py_DECREF(z2);
error1:
Py_DECREF(v1);
Py_DECREF(z1);
error2:
Py_DECREF(v);
Py_DECREF(w);
error3:
if (c >= 0)
return x;
1995-07-18 14:12:02 +00:00
}
ternary_error:
PyErr_Format(PyExc_TypeError, "unsupported operand type(s) for %s",
op_name);
return NULL;
1995-07-18 14:12:02 +00:00
}
#define BINARY_FUNC(func, op, op_name) \
PyObject * \
func(PyObject *v, PyObject *w) { \
return binary_op(v, w, NB_SLOT(op), op_name); \
}
BINARY_FUNC(PyNumber_Or, nb_or, "|")
BINARY_FUNC(PyNumber_Xor, nb_xor, "^")
BINARY_FUNC(PyNumber_And, nb_and, "&")
BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<")
BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>")
BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-")
BINARY_FUNC(PyNumber_Multiply, nb_multiply, "*")
BINARY_FUNC(PyNumber_Divide, nb_divide, "/")
BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()")
1995-07-18 14:12:02 +00:00
PyObject *
PyNumber_Add(PyObject *v, PyObject *w)
1995-07-18 14:12:02 +00:00
{
PyObject *result = binary_op1(v, w, NB_SLOT(nb_add));
if (result == Py_NotImplemented) {
PySequenceMethods *m = v->ob_type->tp_as_sequence;
Py_DECREF(Py_NotImplemented);
if (m && m->sq_concat) {
result = (*m->sq_concat)(v, w);
}
else {
PyErr_SetString(PyExc_TypeError,
"unsupported operand types for +");
result = NULL;
}
1995-07-18 14:12:02 +00:00
}
return result;
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Remainder(PyObject *v, PyObject *w)
1995-07-18 14:12:02 +00:00
{
if (PyString_Check(v))
1995-07-18 14:12:02 +00:00
return PyString_Format(v, w);
else if (PyUnicode_Check(v))
return PyUnicode_Format(v, w);
return binary_op(v, w, NB_SLOT(nb_remainder), "%");
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Power(PyObject *v, PyObject *w, PyObject *z)
1995-07-18 14:12:02 +00:00
{
return ternary_op(v, w, z, NB_SLOT(nb_power), "** or pow()");
1995-07-18 14:12:02 +00:00
}
/* Binary in-place operators */
/* The in-place operators are defined to fall back to the 'normal',
non in-place operations, if the in-place methods are not in place.
- If the left hand object has the appropriate struct members, and
they are filled, call the appropriate function and return the
result. No coercion is done on the arguments; the left-hand object
is the one the operation is performed on, and it's up to the
function to deal with the right-hand object.
- Otherwise, in-place modification is not supported. Handle it exactly as
a non in-place operation of the same kind.
*/
#define HASINPLACE(t) PyType_HasFeature((t)->ob_type, Py_TPFLAGS_HAVE_INPLACEOPS)
static PyObject *
binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot,
const char *op_name)
{
PyNumberMethods *mv = v->ob_type->tp_as_number;
if (mv != NULL && HASINPLACE(v)) {
binaryfunc *slot = NB_BINOP(mv, iop_slot);
if (*slot) {
PyObject *x = (*slot)(v, w);
if (x != Py_NotImplemented) {
return x;
}
Py_DECREF(x);
}
}
return binary_op(v, w, op_slot, op_name);
}
#define INPLACE_BINOP(func, iop, op, op_name) \
PyObject * \
func(PyObject *v, PyObject *w) { \
return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \
}
INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=")
INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=")
INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=")
INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=")
INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=")
INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=")
INPLACE_BINOP(PyNumber_InPlaceDivide, nb_inplace_divide, nb_divide, "/=")
PyObject *
PyNumber_InPlaceAdd(PyObject *v, PyObject *w)
{
binaryfunc f = NULL;
if (v->ob_type->tp_as_sequence != NULL) {
if (HASINPLACE(v))
f = v->ob_type->tp_as_sequence->sq_inplace_concat;
if (f == NULL)
f = v->ob_type->tp_as_sequence->sq_concat;
if (f != NULL)
return (*f)(v, w);
}
return binary_iop(v, w, NB_SLOT(nb_inplace_add), NB_SLOT(nb_add), "+=");
}
PyObject *
PyNumber_InPlaceMultiply(PyObject *v, PyObject *w)
{
2000-09-02 08:34:40 +00:00
PyObject * (*g)(PyObject *, int) = NULL;
if (HASINPLACE(v) && v->ob_type->tp_as_sequence &&
(g = v->ob_type->tp_as_sequence->sq_inplace_repeat)) {
long n;
if (PyInt_Check(w)) {
n = PyInt_AsLong(w);
}
else if (PyLong_Check(w)) {
n = PyLong_AsLong(w);
if (n == -1 && PyErr_Occurred())
return NULL;
}
else {
return type_error("can't multiply sequence to non-int");
}
return (*g)(v, (int)n);
}
return binary_iop(v, w, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply), "*=");
}
PyObject *
PyNumber_InPlaceRemainder(PyObject *v, PyObject *w)
{
if (PyString_Check(v))
return PyString_Format(v, w);
else if (PyUnicode_Check(v))
return PyUnicode_Format(v, w);
else
return binary_iop(v, w, NB_SLOT(nb_inplace_remainder),
NB_SLOT(nb_remainder), "%=");
}
PyObject *
PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z)
{
if (HASINPLACE(v) && v->ob_type->tp_as_number &&
v->ob_type->tp_as_number->nb_inplace_power != NULL) {
return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**=");
}
else {
return ternary_op(v, w, z, NB_SLOT(nb_power), "**=");
}
}
/* Unary operators and functions */
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Negative(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_negative)
return (*m->nb_negative)(o);
return type_error("bad operand type for unary -");
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Positive(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_positive)
return (*m->nb_positive)(o);
return type_error("bad operand type for unary +");
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Invert(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_invert)
return (*m->nb_invert)(o);
return type_error("bad operand type for unary ~");
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Absolute(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyNumberMethods *m;
1995-07-18 14:12:02 +00:00
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_absolute)
return m->nb_absolute(o);
1995-07-18 14:12:02 +00:00
return type_error("bad operand type for abs()");
1995-07-18 14:12:02 +00:00
}
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
/* Add a check for embedded NULL-bytes in the argument. */
static PyObject *
2000-07-09 04:06:11 +00:00
int_from_string(const char *s, int len)
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
{
char *end;
PyObject *x;
x = PyInt_FromString((char*)s, &end, 10);
if (x == NULL)
return NULL;
if (end != s + len) {
PyErr_SetString(PyExc_ValueError,
"null byte in argument for int()");
Py_DECREF(x);
return NULL;
}
return x;
}
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Int(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyNumberMethods *m;
const char *buffer;
int buffer_len;
1995-07-18 14:12:02 +00:00
if (o == NULL)
return null_error();
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
if (PyInt_Check(o)) {
Py_INCREF(o);
return o;
}
if (PyString_Check(o))
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
return int_from_string(PyString_AS_STRING(o),
PyString_GET_SIZE(o));
if (PyUnicode_Check(o))
return PyInt_FromUnicode(PyUnicode_AS_UNICODE(o),
PyUnicode_GET_SIZE(o),
10);
m = o->ob_type->tp_as_number;
if (m && m->nb_int)
return m->nb_int(o);
if (!PyObject_AsCharBuffer(o, &buffer, &buffer_len))
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
return int_from_string((char*)buffer, buffer_len);
1995-07-18 14:12:02 +00:00
return type_error("object can't be converted to int");
1995-07-18 14:12:02 +00:00
}
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
/* Add a check for embedded NULL-bytes in the argument. */
static PyObject *
2000-07-09 04:06:11 +00:00
long_from_string(const char *s, int len)
{
char *end;
PyObject *x;
x = PyLong_FromString((char*)s, &end, 10);
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
if (x == NULL)
return NULL;
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
if (end != s + len) {
PyErr_SetString(PyExc_ValueError,
"null byte in argument for long()");
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
Py_DECREF(x);
return NULL;
}
return x;
}
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Long(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyNumberMethods *m;
const char *buffer;
int buffer_len;
1995-07-18 14:12:02 +00:00
if (o == NULL)
return null_error();
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
if (PyLong_Check(o)) {
Py_INCREF(o);
return o;
}
if (PyString_Check(o))
/* need to do extra error checking that PyLong_FromString()
* doesn't do. In particular long('9.5') must raise an
* exception, not truncate the float.
*/
return long_from_string(PyString_AS_STRING(o),
PyString_GET_SIZE(o));
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
if (PyUnicode_Check(o))
/* The above check is done in PyLong_FromUnicode(). */
return PyLong_FromUnicode(PyUnicode_AS_UNICODE(o),
PyUnicode_GET_SIZE(o),
10);
m = o->ob_type->tp_as_number;
if (m && m->nb_long)
return m->nb_long(o);
if (!PyObject_AsCharBuffer(o, &buffer, &buffer_len))
return long_from_string(buffer, buffer_len);
1995-07-18 14:12:02 +00:00
return type_error("object can't be converted to long");
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PyNumber_Float(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyNumberMethods *m;
1995-07-18 14:12:02 +00:00
if (o == NULL)
return null_error();
Marc-Andre's third try at this bulk patch seems to work (except that his copy of test_contains.py seems to be broken -- the lines he deleted were already absent). Checkin messages: New Unicode support for int(), float(), complex() and long(). - new APIs PyInt_FromUnicode() and PyLong_FromUnicode() - added support for Unicode to PyFloat_FromString() - new encoding API PyUnicode_EncodeDecimal() which converts Unicode to a decimal char* string (used in the above new APIs) - shortcuts for calls like int(<int object>) and float(<float obj>) - tests for all of the above Unicode compares and contains checks: - comparing Unicode and non-string types now works; TypeErrors are masked, all other errors such as ValueError during Unicode coercion are passed through (note that PyUnicode_Compare does not implement the masking -- PyObject_Compare does this) - contains now works for non-string types too; TypeErrors are masked and 0 returned; all other errors are passed through Better testing support for the standard codecs. Misc minor enhancements, such as an alias dbcs for the mbcs codec. Changes: - PyLong_FromString() now applies the same error checks as does PyInt_FromString(): trailing garbage is reported as error and not longer silently ignored. The only characters which may be trailing the digits are 'L' and 'l' -- these are still silently ignored. - string.ato?() now directly interface to int(), long() and float(). The error strings are now a little different, but the type still remains the same. These functions are now ready to get declared obsolete ;-) - PyNumber_Int() now also does a check for embedded NULL chars in the input string; PyNumber_Long() already did this (and still does) Followed by: Looks like I've gone a step too far there... (and test_contains.py seem to have a bug too). I've changed back to reporting all errors in PyUnicode_Contains() and added a few more test cases to test_contains.py (plus corrected the join() NameError).
2000-04-05 20:11:21 +00:00
if (PyFloat_Check(o)) {
Py_INCREF(o);
return o;
}
if (!PyString_Check(o)) {
m = o->ob_type->tp_as_number;
if (m && m->nb_float)
return m->nb_float(o);
}
return PyFloat_FromString(o, NULL);
1995-07-18 14:12:02 +00:00
}
/* Operations on sequences */
1995-07-18 14:12:02 +00:00
int
2000-07-09 04:06:11 +00:00
PySequence_Check(PyObject *s)
1995-07-18 14:12:02 +00:00
{
return s != NULL && s->ob_type->tp_as_sequence;
1995-07-18 14:12:02 +00:00
}
int
PySequence_Size(PyObject *s)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
1995-07-18 14:12:02 +00:00
if (s == NULL) {
null_error();
return -1;
}
1995-07-18 14:12:02 +00:00
m = s->ob_type->tp_as_sequence;
if (m && m->sq_length)
return m->sq_length(s);
1995-07-18 14:12:02 +00:00
type_error("len() of unsized object");
return -1;
1995-07-18 14:12:02 +00:00
}
#undef PySequence_Length
int
PySequence_Length(PyObject *s)
{
return PySequence_Size(s);
}
#define PySequence_Length PySequence_Size
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PySequence_Concat(PyObject *s, PyObject *o)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
if (s == NULL || o == NULL)
return null_error();
1995-07-18 14:12:02 +00:00
m = s->ob_type->tp_as_sequence;
if (m && m->sq_concat)
return m->sq_concat(s, o);
1995-07-18 14:12:02 +00:00
return type_error("object can't be concatenated");
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PySequence_Repeat(PyObject *o, int count)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
1995-07-18 14:12:02 +00:00
if (o == NULL)
return null_error();
1995-07-18 14:12:02 +00:00
m = o->ob_type->tp_as_sequence;
if (m && m->sq_repeat)
return m->sq_repeat(o, count);
return type_error("object can't be repeated");
1995-07-18 14:12:02 +00:00
}
PyObject *
PySequence_InPlaceConcat(PyObject *s, PyObject *o)
{
PySequenceMethods *m;
if (s == NULL || o == NULL)
return null_error();
m = s->ob_type->tp_as_sequence;
if (m && HASINPLACE(s) && m->sq_inplace_concat)
return m->sq_inplace_concat(s, o);
if (m && m->sq_concat)
return m->sq_concat(s, o);
return type_error("object can't be concatenated");
}
PyObject *
PySequence_InPlaceRepeat(PyObject *o, int count)
{
PySequenceMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_sequence;
if (m && HASINPLACE(o) && m->sq_inplace_repeat)
return m->sq_inplace_repeat(o, count);
if (m && m->sq_repeat)
return m->sq_repeat(o, count);
return type_error("object can't be repeated");
}
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PySequence_GetItem(PyObject *s, int i)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
if (s == NULL)
return null_error();
m = s->ob_type->tp_as_sequence;
if (m && m->sq_item) {
if (i < 0) {
if (m->sq_length) {
int l = (*m->sq_length)(s);
if (l < 0)
return NULL;
i += l;
}
}
return m->sq_item(s, i);
}
1995-07-18 14:12:02 +00:00
return type_error("unindexable object");
1995-07-18 14:12:02 +00:00
}
static PyObject *
sliceobj_from_intint(int i, int j)
{
PyObject *start, *end, *slice;
start = PyInt_FromLong((long)i);
if (!start)
return NULL;
end = PyInt_FromLong((long)j);
if (!end) {
Py_DECREF(start);
return NULL;
}
slice = PySlice_New(start, end, NULL);
Py_DECREF(start);
Py_DECREF(end);
return slice;
}
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PySequence_GetSlice(PyObject *s, int i1, int i2)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
PyMappingMethods *mp;
if (!s) return null_error();
m = s->ob_type->tp_as_sequence;
if (m && m->sq_slice) {
if (i1 < 0 || i2 < 0) {
if (m->sq_length) {
int l = (*m->sq_length)(s);
if (l < 0)
return NULL;
if (i1 < 0)
i1 += l;
if (i2 < 0)
i2 += l;
}
}
return m->sq_slice(s, i1, i2);
} else if ((mp = s->ob_type->tp_as_mapping) && mp->mp_subscript) {
PyObject *res;
PyObject *slice = sliceobj_from_intint(i1, i2);
if (!slice)
return NULL;
res = mp->mp_subscript(s, slice);
Py_DECREF(slice);
return res;
}
1997-04-02 05:31:09 +00:00
return type_error("unsliceable object");
1995-07-18 14:12:02 +00:00
}
int
2000-07-09 04:06:11 +00:00
PySequence_SetItem(PyObject *s, int i, PyObject *o)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_item) {
if (i < 0) {
if (m->sq_length) {
int l = (*m->sq_length)(s);
if (l < 0)
return -1;
i += l;
}
}
return m->sq_ass_item(s, i, o);
}
type_error("object doesn't support item assignment");
return -1;
1995-07-18 14:12:02 +00:00
}
int
2000-07-09 04:06:11 +00:00
PySequence_DelItem(PyObject *s, int i)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_item) {
if (i < 0) {
if (m->sq_length) {
int l = (*m->sq_length)(s);
if (l < 0)
return -1;
i += l;
}
}
return m->sq_ass_item(s, i, (PyObject *)NULL);
}
type_error("object doesn't support item deletion");
return -1;
}
int
2000-07-09 04:06:11 +00:00
PySequence_SetSlice(PyObject *s, int i1, int i2, PyObject *o)
1995-07-18 14:12:02 +00:00
{
PySequenceMethods *m;
PyMappingMethods *mp;
1995-07-18 14:12:02 +00:00
if (s == NULL) {
null_error();
return -1;
}
1995-07-18 14:12:02 +00:00
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_slice) {
if (i1 < 0 || i2 < 0) {
if (m->sq_length) {
int l = (*m->sq_length)(s);
if (l < 0)
return -1;
if (i1 < 0)
i1 += l;
if (i2 < 0)
i2 += l;
}
}
return m->sq_ass_slice(s, i1, i2, o);
} else if ((mp = s->ob_type->tp_as_mapping) && mp->mp_ass_subscript) {
int res;
PyObject *slice = sliceobj_from_intint(i1, i2);
if (!slice)
return -1;
res = mp->mp_ass_subscript(s, slice, o);
Py_DECREF(slice);
return res;
}
type_error("object doesn't support slice assignment");
return -1;
1995-07-18 14:12:02 +00:00
}
int
2000-07-09 04:06:11 +00:00
PySequence_DelSlice(PyObject *s, int i1, int i2)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_slice) {
if (i1 < 0 || i2 < 0) {
if (m->sq_length) {
int l = (*m->sq_length)(s);
if (l < 0)
return -1;
if (i1 < 0)
i1 += l;
if (i2 < 0)
i2 += l;
}
}
return m->sq_ass_slice(s, i1, i2, (PyObject *)NULL);
}
type_error("object doesn't support slice deletion");
return -1;
}
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PySequence_Tuple(PyObject *v)
1995-07-18 14:12:02 +00:00
{
PyObject *it; /* iter(v) */
int n; /* guess for result tuple size */
PyObject *result;
int j;
1995-07-18 14:12:02 +00:00
if (v == NULL)
return null_error();
1995-07-18 14:12:02 +00:00
/* Special-case the common tuple and list cases, for efficiency. */
if (PyTuple_Check(v)) {
Py_INCREF(v);
return v;
}
if (PyList_Check(v))
return PyList_AsTuple(v);
/* Get iterator. */
it = PyObject_GetIter(v);
if (it == NULL)
return type_error("tuple() argument must support iteration");
1995-07-18 14:12:02 +00:00
/* Guess result size and allocate space. */
n = PySequence_Size(v);
if (n < 0) {
PyErr_Clear();
n = 10; /* arbitrary */
}
result = PyTuple_New(n);
if (result == NULL)
goto Fail;
/* Fill the tuple. */
for (j = 0; ; ++j) {
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
if (j >= n) {
if (n < 500)
n += 10;
else
n += 100;
if (_PyTuple_Resize(&result, n) != 0) {
Py_DECREF(item);
goto Fail;
}
}
PyTuple_SET_ITEM(result, j, item);
1995-07-18 14:12:02 +00:00
}
/* Cut tuple back if guess was too large. */
if (j < n &&
_PyTuple_Resize(&result, j) != 0)
goto Fail;
Py_DECREF(it);
return result;
Fail:
Py_XDECREF(result);
Py_DECREF(it);
return NULL;
1995-07-18 14:12:02 +00:00
}
PyObject *
2000-07-09 04:06:11 +00:00
PySequence_List(PyObject *v)
{
PyObject *it; /* iter(v) */
PyObject *result; /* result list */
int n; /* guess for result list size */
int i;
if (v == NULL)
return null_error();
/* Special-case list(a_list), for speed. */
if (PyList_Check(v))
return PyList_GetSlice(v, 0, PyList_GET_SIZE(v));
/* Get iterator. There may be some low-level efficiency to be gained
* by caching the tp_iternext slot instead of using PyIter_Next()
* later, but premature optimization is the root etc.
*/
it = PyObject_GetIter(v);
if (it == NULL)
return NULL;
/* Guess a result list size. */
n = -1; /* unknown */
if (PySequence_Check(v) &&
v->ob_type->tp_as_sequence->sq_length) {
n = PySequence_Size(v);
if (n < 0)
PyErr_Clear();
}
if (n < 0)
n = 8; /* arbitrary */
result = PyList_New(n);
if (result == NULL) {
Py_DECREF(it);
return NULL;
}
/* Run iterator to exhaustion. */
for (i = 0; ; i++) {
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred()) {
Py_DECREF(result);
result = NULL;
}
break;
}
if (i < n)
PyList_SET_ITEM(result, i, item); /* steals ref */
else {
int status = PyList_Append(result, item);
Py_DECREF(item); /* append creates a new ref */
if (status < 0) {
Py_DECREF(result);
result = NULL;
break;
}
}
}
/* Cut back result list if initial guess was too large. */
if (i < n && result != NULL) {
if (PyList_SetSlice(result, i, n, (PyObject *)NULL) != 0) {
Py_DECREF(result);
result = NULL;
}
}
Py_DECREF(it);
return result;
}
1997-04-02 05:31:09 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PySequence_Fast(PyObject *v, const char *m)
{
if (v == NULL)
return null_error();
if (PyList_Check(v) || PyTuple_Check(v)) {
Py_INCREF(v);
return v;
}
v = PySequence_Tuple(v);
if (v == NULL && PyErr_ExceptionMatches(PyExc_TypeError))
return type_error(m);
return v;
}
/* Return # of times o appears in s. */
int
2000-07-09 04:06:11 +00:00
PySequence_Count(PyObject *s, PyObject *o)
{
int n; /* running count of o hits */
PyObject *it; /* iter(s) */
1997-04-02 05:31:09 +00:00
if (s == NULL || o == NULL) {
null_error();
return -1;
}
it = PyObject_GetIter(s);
if (it == NULL) {
type_error(".count() requires iterable argument");
return -1;
}
n = 0;
for (;;) {
int cmp;
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
cmp = PyObject_RichCompareBool(o, item, Py_EQ);
Py_DECREF(item);
if (cmp < 0)
goto Fail;
if (cmp > 0) {
if (n == INT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"count exceeds C int size");
goto Fail;
}
n++;
}
1997-04-02 05:31:09 +00:00
}
Py_DECREF(it);
return n;
Fail:
Py_DECREF(it);
return -1;
}
/* Return -1 if error; 1 if ob in seq; 0 if ob not in seq.
* Always uses the iteration protocol, and only Py_EQ comparison.
*/
int
_PySequence_IterContains(PyObject *seq, PyObject *ob)
1995-07-18 14:12:02 +00:00
{
int result;
PyObject *it = PyObject_GetIter(seq);
if (it == NULL) {
PyErr_SetString(PyExc_TypeError,
"'in' or 'not in' needs iterable right argument");
return -1;
}
for (;;) {
int cmp;
PyObject *item = PyIter_Next(it);
if (item == NULL) {
result = PyErr_Occurred() ? -1 : 0;
break;
}
cmp = PyObject_RichCompareBool(ob, item, Py_EQ);
Py_DECREF(item);
if (cmp == 0)
continue;
result = cmp > 0 ? 1 : -1;
break;
}
Py_DECREF(it);
return result;
1995-07-18 14:12:02 +00:00
}
/* Return -1 if error; 1 if ob in seq; 0 if ob not in seq.
* Use sq_contains if possible, else defer to _PySequence_IterContains().
*/
int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
if (PyType_HasFeature(seq->ob_type, Py_TPFLAGS_HAVE_SEQUENCE_IN)) {
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
}
return _PySequence_IterContains(seq, ob);
}
/* Backwards compatibility */
#undef PySequence_In
int
2000-07-09 04:06:11 +00:00
PySequence_In(PyObject *w, PyObject *v)
1995-07-18 14:12:02 +00:00
{
return PySequence_Contains(w, v);
1995-07-18 14:12:02 +00:00
}
int
2000-07-09 04:06:11 +00:00
PySequence_Index(PyObject *s, PyObject *o)
1995-07-18 14:12:02 +00:00
{
int l, i, cmp, err;
PyObject *item;
if (s == NULL || o == NULL) {
null_error();
return -1;
}
l = PySequence_Size(s);
if (l < 0)
return -1;
for (i = 0; i < l; i++) {
item = PySequence_GetItem(s, i);
if (item == NULL)
return -1;
err = PyObject_Cmp(item, o, &cmp);
Py_DECREF(item);
if (err < 0)
return err;
if (cmp == 0)
return i;
}
PyErr_SetString(PyExc_ValueError, "sequence.index(x): x not in list");
return -1;
1995-07-18 14:12:02 +00:00
}
/* Operations on mappings */
int
2000-07-09 04:06:11 +00:00
PyMapping_Check(PyObject *o)
1995-07-18 14:12:02 +00:00
{
return o && o->ob_type->tp_as_mapping;
1995-07-18 14:12:02 +00:00
}
int
PyMapping_Size(PyObject *o)
1995-07-18 14:12:02 +00:00
{
PyMappingMethods *m;
1995-07-18 14:12:02 +00:00
if (o == NULL) {
null_error();
return -1;
}
1995-07-18 14:12:02 +00:00
m = o->ob_type->tp_as_mapping;
if (m && m->mp_length)
return m->mp_length(o);
1995-07-18 14:12:02 +00:00
type_error("len() of unsized object");
return -1;
1995-07-18 14:12:02 +00:00
}
#undef PyMapping_Length
int
PyMapping_Length(PyObject *o)
{
return PyMapping_Size(o);
}
#define PyMapping_Length PyMapping_Size
PyObject *
2000-07-09 04:06:11 +00:00
PyMapping_GetItemString(PyObject *o, char *key)
{
PyObject *okey, *r;
if (key == NULL)
return null_error();
okey = PyString_FromString(key);
if (okey == NULL)
return NULL;
r = PyObject_GetItem(o, okey);
Py_DECREF(okey);
return r;
}
int
2000-07-09 04:06:11 +00:00
PyMapping_SetItemString(PyObject *o, char *key, PyObject *value)
{
PyObject *okey;
int r;
if (key == NULL) {
null_error();
return -1;
}
okey = PyString_FromString(key);
if (okey == NULL)
return -1;
r = PyObject_SetItem(o, okey, value);
Py_DECREF(okey);
return r;
}
int
2000-07-09 04:06:11 +00:00
PyMapping_HasKeyString(PyObject *o, char *key)
1995-07-18 14:12:02 +00:00
{
PyObject *v;
v = PyMapping_GetItemString(o, key);
if (v) {
Py_DECREF(v);
return 1;
}
PyErr_Clear();
return 0;
1995-07-18 14:12:02 +00:00
}
int
2000-07-09 04:06:11 +00:00
PyMapping_HasKey(PyObject *o, PyObject *key)
1995-07-18 14:12:02 +00:00
{
PyObject *v;
v = PyObject_GetItem(o, key);
if (v) {
Py_DECREF(v);
return 1;
}
PyErr_Clear();
return 0;
1995-07-18 14:12:02 +00:00
}
/* Operations on callable objects */
/* XXX PyCallable_Check() is in object.c */
1995-07-18 14:12:02 +00:00
PyObject *
2000-07-09 04:06:11 +00:00
PyObject_CallObject(PyObject *o, PyObject *a)
1995-07-18 14:12:02 +00:00
{
PyObject *r;
PyObject *args = a;
1995-07-18 14:12:02 +00:00
if (args == NULL) {
args = PyTuple_New(0);
if (args == NULL)
return NULL;
}
r = PyEval_CallObject(o, args);
1995-07-18 14:12:02 +00:00
if (args != a) {
Py_DECREF(args);
}
return r;
}
1995-07-18 14:12:02 +00:00
PyObject *
PyObject_CallFunction(PyObject *callable, char *format, ...)
1995-07-18 14:12:02 +00:00
{
va_list va;
PyObject *args, *retval;
va_start(va, format);
1995-07-18 14:12:02 +00:00
if (callable == NULL) {
va_end(va);
return null_error();
}
if (format)
args = Py_VaBuildValue(format, va);
else
args = PyTuple_New(0);
va_end(va);
if (args == NULL)
return NULL;
if (!PyTuple_Check(args)) {
PyObject *a;
a = PyTuple_New(1);
if (a == NULL)
return NULL;
if (PyTuple_SetItem(a, 0, args) < 0)
return NULL;
args = a;
}
retval = PyObject_CallObject(callable, args);
Py_DECREF(args);
return retval;
1995-07-18 14:12:02 +00:00
}
PyObject *
PyObject_CallMethod(PyObject *o, char *name, char *format, ...)
{
va_list va;
PyObject *args, *func = 0, *retval;
va_start(va, format);
1995-07-18 14:12:02 +00:00
if (o == NULL || name == NULL) {
va_end(va);
return null_error();
}
1995-07-18 14:12:02 +00:00
func = PyObject_GetAttrString(o, name);
if (func == NULL) {
va_end(va);
PyErr_SetString(PyExc_AttributeError, name);
return 0;
}
1995-07-18 14:12:02 +00:00
if (!PyCallable_Check(func)) {
va_end(va);
return type_error("call of non-callable attribute");
}
1995-07-18 14:12:02 +00:00
if (format && *format)
args = Py_VaBuildValue(format, va);
else
args = PyTuple_New(0);
va_end(va);
if (!args)
return NULL;
if (!PyTuple_Check(args)) {
PyObject *a;
a = PyTuple_New(1);
if (a == NULL)
return NULL;
if (PyTuple_SetItem(a, 0, args) < 0)
return NULL;
args = a;
}
retval = PyObject_CallObject(func, args);
Py_DECREF(args);
Py_DECREF(func);
return retval;
1995-07-18 14:12:02 +00:00
}
/* isinstance(), issubclass() */
static int
abstract_issubclass(PyObject *derived, PyObject *cls, int first)
{
static PyObject *__bases__ = NULL;
PyObject *bases;
int i, n;
int r = 0;
if (__bases__ == NULL) {
__bases__ = PyString_FromString("__bases__");
if (__bases__ == NULL)
return -1;
}
if (first) {
bases = PyObject_GetAttr(cls, __bases__);
if (bases == NULL || !PyTuple_Check(bases)) {
Py_XDECREF(bases);
PyErr_SetString(PyExc_TypeError,
"issubclass() arg 2 must be a class");
return -1;
}
Py_DECREF(bases);
}
if (derived == cls)
return 1;
bases = PyObject_GetAttr(derived, __bases__);
if (bases == NULL || !PyTuple_Check(bases)) {
Py_XDECREF(bases);
PyErr_SetString(PyExc_TypeError,
"issubclass() arg 1 must be a class");
return -1;
}
n = PyTuple_GET_SIZE(bases);
for (i = 0; i < n; i++) {
r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls, 0);
if (r != 0)
break;
}
Py_DECREF(bases);
return r;
}
int
PyObject_IsInstance(PyObject *inst, PyObject *cls)
{
PyObject *icls;
static PyObject *__class__ = NULL;
int retval = 0;
if (PyClass_Check(cls)) {
if (PyInstance_Check(inst)) {
PyObject *inclass =
(PyObject*)((PyInstanceObject*)inst)->in_class;
retval = PyClass_IsSubclass(inclass, cls);
}
}
else if (PyType_Check(cls)) {
retval = ((PyObject *)(inst->ob_type) == cls);
}
else if (!PyInstance_Check(inst)) {
if (__class__ == NULL) {
__class__ = PyString_FromString("__class__");
if (__class__ == NULL)
return -1;
}
icls = PyObject_GetAttr(inst, __class__);
if (icls != NULL) {
retval = abstract_issubclass(icls, cls, 1);
Py_DECREF(icls);
if (retval < 0 &&
!PyErr_ExceptionMatches(PyExc_TypeError))
return -1;
}
else
retval = -1;
}
else
retval = -1;
if (retval < 0) {
PyErr_SetString(PyExc_TypeError,
"isinstance() arg 2 must be a class or type");
}
return retval;
}
int
PyObject_IsSubclass(PyObject *derived, PyObject *cls)
{
int retval;
if (!PyClass_Check(derived) || !PyClass_Check(cls)) {
retval = abstract_issubclass(derived, cls, 1);
}
else {
/* shortcut */
if (!(retval = (derived == cls)))
retval = PyClass_IsSubclass(derived, cls);
}
return retval;
}
PyObject *
PyObject_GetIter(PyObject *o)
{
PyTypeObject *t = o->ob_type;
getiterfunc f = NULL;
if (PyType_HasFeature(t, Py_TPFLAGS_HAVE_ITER))
f = t->tp_iter;
if (f == NULL) {
if (PySequence_Check(o))
return PySeqIter_New(o);
PyErr_SetString(PyExc_TypeError, "iter() of non-sequence");
return NULL;
}
else {
PyObject *res = (*f)(o);
if (res != NULL && !PyIter_Check(res)) {
PyErr_Format(PyExc_TypeError,
"iter() returned non-iterator "
"of type '%.100s'",
res->ob_type->tp_name);
Py_DECREF(res);
res = NULL;
}
return res;
}
}
/* Return next item.
* If an error occurs, return NULL. PyErr_Occurred() will be true.
* If the iteration terminates normally, return NULL and clear the
* PyExc_StopIteration exception (if it was set). PyErr_Occurred()
* will be false.
* Else return the next object. PyErr_Occurred() will be false.
*/
PyObject *
PyIter_Next(PyObject *iter)
{
PyObject *result;
if (!PyIter_Check(iter)) {
PyErr_Format(PyExc_TypeError,
"'%.100s' object is not an iterator",
iter->ob_type->tp_name);
return NULL;
}
result = (*iter->ob_type->tp_iternext)(iter);
if (result == NULL &&
PyErr_Occurred() &&
PyErr_ExceptionMatches(PyExc_StopIteration))
PyErr_Clear();
return result;
}